Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T04:43:07.429Z Has data issue: false hasContentIssue false

Nonlinear Optical Polymers Derived From Organic/Inorganic Composites

Published online by Cambridge University Press:  21 February 2011

S. K. Tripathy
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854
J. Kumar
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854
J. I. Chen
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854
S. Marturunkakul
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854
R. J. Jeng
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854
L. Li
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854
X. L. Jiang
Affiliation:
Center for Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ermer, S., Valley, J. F., Lytel, R., Lipscomb, G. F., Van Eck, T. E., and Girton, D. G., Appl. Phys. Lett. 61, 2272 (1992).Google Scholar
2 Burland, D. M., Miller, R. D., Walsh, C. A., Chem. Rev. 94, 31 (1994) and references contained therein.Google Scholar
3 Singer, K. D., Sohn, J. E., and Lalama, S. J., Appl. Phys. Lett. 49, 248 (1986).Google Scholar
4 Stähelin, M., Burland, D. M., Ebert, M., Miller, R. D., Smith, B. A., Twieg, R. J., Volksen, W., and Walsh, C. A., Appl. Phys. Lett. 61, 1626 (1992).Google Scholar
5 Eich, M., Reck, B., Yoon, D. Y., Willson, C. G., and Bjorklund, G. C., J. Appl. Phys. 66, 3241 (1989).Google Scholar
6 Jeng, R. J., Chen, Y. M., Kumar, J., and Tripathy, S. K., J. Macromol. Sei., Pure Appl. Chem. A29, 1115 (1992).Google Scholar
7 Mandai, B. K., Chen, Y. M., Lee, J. Y., Kumar, J., and Tripathy, S. K., Appl. Phys. Lett. 58, 2459 (1991).Google Scholar
8 Jeng, R. J., Chen, Y. M., Jain, A. K., Tripathy, S. K., and Kumar, J., Opt. Commun. 89, 212 (1992).Google Scholar
9 Xu, C., Wu, B., Todorova, O., Dalton, L. R., Shi, Y., Ranon, P. M., and Steier, W. H., Macromolecules 26, 5303 (1993).Google Scholar
10 Hubbard, M. A., Marks, T. J., Yang, J., and Wong, G. K., Chem. Mater. 1, 167 (1989).Google Scholar
11 Brinker, C. and Scherer, G., Sol-Gel Science, (Academic Press, Olando, FL. 1990).Google Scholar
12 Roncone, R. L., Weller-Brophy, L. A., Weisenbach, L., and Zelinski, B. J. J., J. Non-Cryst. Solids 128, 111 (1991).Google Scholar
13 Guglielmi, M., Colombo, P., Mancinelli Degli Esposti, L., Righini, G. C., Pelli, S., and Rigato, V., J. Non-Cryst. Solids 147, 641 (1992).Google Scholar
14 Novak, B. M. and Davies, C., Macromolecules 24, 5481 (1991).Google Scholar
15 Jeng, R. J., Chen, Y. M., Jain, A. K., Kumar, J., and Tripathy, S. K., Chem. Mater. 4, 972 (1992).Google Scholar
16 Marturunkakul, S., Chen, J. I., Li, L., Jeng, R. J., Kumar, J., and Tripathy, S. K., Chem. Mater. 5, 592 (1993).Google Scholar
17 Jeng, R. J., Chen, Y. M., Chen, J. I., Kumar, J., and Tripathy, S. K., Macromolecules 26, 2530 (1993).Google Scholar
18 Claude, C., Garetz, B., Okamoto, Y., and Tripathy, S. K., Mater. Lett. 14, 336 (1992).Google Scholar
19 Zhang, Y., Prasad, P. N., Burzynski, R., Chem. Mater. 4, 851 (1992).Google Scholar
20 Kim, J., Plawsky, J. L., LaPeruta, R., and Korenowski, G. M., Chem. Matr. 4, 249 (1992)Google Scholar
21 Cotts, P. M. and Volksen, W., in Polymers in Electronics, edited, by Davidson, T. (ACS Symposium Series 242, Washington D. C, 1984), p. 227.Google Scholar
22 Nandi, M., Conklin, J. A., Salvati, L., and Sen, A., Chem. Mater. 3, 201 (1991).Google Scholar
23 Palmlof, M., Hjertberg, T., and Sultan, B. A., J. Appl. Polym. Sei. 42, 1193 (1991).Google Scholar
24 Wu, J. W., Valley, J. F., Ermer, S., Brinkley, E. S., Kenny, J. T., Lipscomb, G.F., and Lytel, R., Appl. Phys. Lett. 58, 225 (1991).Google Scholar
25 Jeng, R. J., Chen, Y. M., Jain, A. K., Kumar, J., and Tripathy, S. K., Chem. Mater. 4, 1141 (1992).Google Scholar
26 Marturunkakul, S., Chen, J. I., Jeng, R. J., Sengupta, S., Kumar, J., and Tripathy, S. K., Chem. Mater. 5, 592 (1993).Google Scholar
27 Bazant, V., Chralovsky, V., Rathousky, J., Organosilicon Compounds (Academic Press, New York, 1965), p.58.Google Scholar
28 Ray, D. J., Laine, R. M., Viney, C., and Robinson, T. R., Polym. Prepr. Am. Chem. Soc, Div. Polym. Chem. 32, 550 (1991).Google Scholar