Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T20:34:54.287Z Has data issue: false hasContentIssue false

NMR Detection of New Hydrogen Populations in Amorphous and Crystalline Silicon

Published online by Cambridge University Press:  10 February 2011

R. Borzi
Affiliation:
Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130, ren@howdy.wustl.edu
T. S. Cull
Affiliation:
Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130, ren@howdy.wustl.edu
P. A. Fedders
Affiliation:
Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130, ren@howdy.wustl.edu
D. J. Leopold
Affiliation:
Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130, ren@howdy.wustl.edu
R. E. Norberg
Affiliation:
Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130, ren@howdy.wustl.edu
J. B. Boyce
Affiliation:
Xerox PARC, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox PARC, Palo Alto, CA 94304
S. E. Ready
Affiliation:
Xerox PARC, Palo Alto, CA 94304
J. Walker
Affiliation:
Xerox PARC, Palo Alto, CA 94304
Get access

Abstract

Deuteron magnetic resonance (DMR) has been used to further examine hydrogen (deuteron) populations in amorphous-silicon (a-Si) and in n-type crystalline silicon (x-Si). In both a-Si and x-Si DMR shows central components arising at least in part from isolated molecular deuterium and sharp doublet features from Si-bonded hydrogen (D). Our new results include the observation in x-Si of molecule-specific DMR multiple echoes from trapped ortho-D2. A second new result is the observation in x-Si of a substantialn Si-bonded D population with splittings between 46 and 80 kHz and perhaps arising from (deuterated) hydrogen bond-centered and antibonding configurations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Turner, W. A., Jones, S. J., Pang, D., Bateman, B. F., Chen, J. H., Li, Y. M.. Marques, F. C., Wetsel, A. E., Wickboldt, P., Paul, W., Bodart, J., Norberg, R. E., ElZawawi, I., and Theye, M. L., J. Appl. Phys. 67, 12 (1990).Google Scholar
2 Johnson, N. M., Pond, F. A., Street, R. A., and Nemanich, R. J., Phys. Rev. B 35, 4166 (1987).Google Scholar
3 Norberg, R. E., Leopold, D. J., and Fedders, P. A., J. Non-Cryst. Sol. (1998) (in press).Google Scholar
4 Boyce, J. B., Johnson, N. M., Ready, S. E., and Walker, J., Phys. Rev. B 46, 4308 (1992).Google Scholar
5 Borzi, R., Ma, H., Fedders, P. A., Leopold, D. J., Norberg, R. E., Boyce, J. B., Johnson, N. M., Ready, S. E., and Walker, J., Mat. Res. Soc. Symp. Proc. 467, 117 (1997).Google Scholar
6 Volz, M. P., Santos-Filho, P., Conradi, M. S., Fedders, P. A., Norberg, R. E., Turner, W., and Paul, W., Phys. Rev. Letters 63, 2582 (1989).Google Scholar
7 Volz, M. P., Fedders, P. A., and Norberg, R. E., J. Non-Cryst. Sol. 114, 546 (1989).Google Scholar
8 Cull, T. S., Kernan, M. J., Chan, P. H., Fedders, P. A., Leopold, D. J., Norberg, R. E., Wickboldt, P., and Paul, W., Mat. Res. Soc. Symp. Proc. 467, 123 (1997).Google Scholar
9 Holbech, J. D., Nielsen, B. Bech, Jones, R., Sitch, P., and Oberg, S., Phys. Rev. Letters 71, 875 (1993).Google Scholar