Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T12:30:10.136Z Has data issue: false hasContentIssue false

Nmr Characterization of the Chemical Homogeneity in Sol-Gel Derived Siloxane-Silica Materials

Published online by Cambridge University Press:  10 February 2011

Florence Babonneau
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie / CNRS, 4 place Jussieu, 75005 Paris, France.
Virginie Gualandris
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie / CNRS, 4 place Jussieu, 75005 Paris, France.
Monique Pauthe
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie / CNRS, 4 place Jussieu, 75005 Paris, France.
Get access

Abstract

17O NMR in solution using enriched water as reactant has been used to investigate cohydrolysis of dimethyldiethoxysilane and tetraethoxysilane, as well as methyltriethoxysilane and tetraethoxysilane. Co-condensation reactions were clearly identified in both systems : the amount of oxo bridges between the two kinds of Si units is rather large, and those bridges are stable during aging, which favor a good chemical homogeneity in the final gels. This last point was investigated on the related dried gels by 29Si Magic Angle Spinning NMR, using Cross-Polarization (CP) technique that allows to probe the local environment of the various Si sites through 29Si-1H dipolar interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Novak, B.M., Adv. Mater. 5, 422 (1993).Google Scholar
2 Sanchez, C., Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
3 Schmidt, H., J. Sol-Gel Sci. and Techn. 1, 217 (1994).Google Scholar
4 Schubert, U., Hüsing, N., Lorenz, A., Chem. Mater. 7, 2010 (1995).Google Scholar
5 Artaki, I., Bradley, M., Zerda, T.W., Jonas, J., J. Phys. Chem. 89, 4399 (1985).Google Scholar
6 Pouxviel, J.C., Boilot, J.P., Beloeil, J.C., Lallemand, J.Y., J. Non Cryst. Solids 89, 345 (1987).Google Scholar
7 Kelts, L.W., Amstrong, N.J., J. Mater. Res. 4, 423 (1989).Google Scholar
8 Assink, R.A., Kay, B.D., Annu. Rev. Mater. Sci. 21, 491 (1991).Google Scholar
9 Brunet, F., Cabane, B., Dubois, M., Perly, B., J. Phys. Chem. 95, 945 (1991).Google Scholar
10 Sugahara, Y., Okada, S., Kuroda, K., Kato, C., J. Non Cryst. Solids 139, 25 (1992).Google Scholar
11 Lux, P., Brunet, F., Desvaux, H., Virlet, J., Magn. Reson. Chem. 31, 623 (1993)Google Scholar
12 Devreux, F., Boilot, J.P., Chaput, F., Lecomte, A., Phys. Rev. A 41, 6901 (1990).Google Scholar
13 Sugahara, Y., Okada, S., Sato, S., Kuroda, K., Kato, C., J. Non Cryst. Solids 167, 21 (1994).Google Scholar
14 Babonneau, F., Bois, L., Livage, J., Mat. Res. Soc. Symp. Proc. 271, 237 (1992).Google Scholar
15 Mah, S.K., Chung, I.J., J. Non Cryst. Solids 183, 252 (1995).Google Scholar
16 Sugahara, Y., Tanaka, Y., Sato, S., Kuroda, K., Kato, C., Mat. Res. Soc. Symp. Proc. 271, 231 (1992).Google Scholar
17 Prabakar, S., Assink, R.A., Raman, N.K., Brinker, C.J., Mat. Res. Soc. Symp. Proc. 346, 979 (1994).Google Scholar
18 Hasegawa, I., J. Sol-Gel Sci. Technol. 1, 57 (1993).Google Scholar
19 Basil, J.D., Lin, C.-C., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J.D., Ulrich, D.R., John Wiley & Sons (1988) pp. 783.Google Scholar
20 Beier, W., Göktas, A.A., Frischat, G.H., Wies, Ch., Meise-Gresch, K., Mtiller-Warmuth, W., Phys. Chem. Glasses, 30, 69 (1989).Google Scholar
21 Diré, S., Babonneau, F., Carturan, G., Livage, J., J. Non Cryst. Solids, 147 &, 62 (1992).Google Scholar
22 Turner, C.W., Franklin, K.J.,, J. Non Cryst. Solids, 91, 402 (1987).Google Scholar
23 Babonneau, F., Mat. Res. Soc. Symp. Proc. 346, 949 (1994).Google Scholar
24 Babonneau, F., Maquet, J., Livage, J. in Sol-Gel Science and Technology Ceramics Transactions, Vol. 55, Am. Ceram. Soc. Ed. (1995) pp. 53.Google Scholar
25 Babonneau, F., Maquet, J., Livage, J., Chem. Mater. 7, 1050 (1995).Google Scholar
26 Babonneau, F., Toutou, C., Gavdriaux, S., J. Sol-Gel Sci. Technol. (in press)Google Scholar
27 Delattre, L., Roy, M., Babonneau, F., J. Sol-Gel Sci. Technol. (in press)Google Scholar
28 Massiot, D., Thiele, H., Germanus, A., Bruker Report, 140, 43 (1994).Google Scholar
29 Delattre, L., Babonneau, F., Mat. Res. Soc. Symp. Proc. 346, 365 (1994).Google Scholar
30 Schmidt, H., Scholze, H., Kaiser, A., J. Non Cryst. Solids, 63, 1 (1984).Google Scholar
31 Kelts, L.W., Armstrong, N.J., J. Mater. Res. 4, 423 (1989).Google Scholar
32 Gray, G.W., Hawthorne, W.D., Lacey, D., White, M.S., Semlyen, J.A., Liquid Crystals, 6, 503 (1989).Google Scholar
33 Babonneau, F., Polyhedron, 13, 1123 (1994).Google Scholar
34 Pines, A., Gibby, M.G., Waugh, J.S., J. Chem. Phys., 59, 569 (1973)Google Scholar
35 Zumbulayadis, N., O'Reilly, J.M., Macromolecules 24, 5294 (1991)Google Scholar
36 Glaser, R.H., Wilkes, G.L., Bronnimann, C.E., J. Non Cryst. Solids, 113, 73 (1985).Google Scholar
37 Fyfe, C.A., Zhang, Y., Aroca, P., J. Am. Chem. Soc. 114, 3252 (1992)Google Scholar