Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T17:57:37.868Z Has data issue: false hasContentIssue false

Nitrogen Plasma Pretreatment of Sapphire Substrates for the GaN Buffer Growth by Remote Plasma Enhanced MOCVD

Published online by Cambridge University Press:  10 February 2011

Min Hong Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University>, Seoul 151–742, Korea
Cheolsoo Sone
Affiliation:
School of Materials Science and Engineering, Seoul National University>, Seoul 151–742, Korea
Jae Hyung Yi
Affiliation:
School of Materials Science and Engineering, Seoul National University>, Seoul 151–742, Korea
Soun Ok Heur
Affiliation:
Inter-university Semiconductor Research Center, Seoul National University, Seoul 151–742, Korea
Euijoon Yoon
Affiliation:
School of Materials Science and Engineering, Seoul National University>, Seoul 151–742, Korea
Get access

Abstract

Low-temperature GaN buffer layers with smooth surfaces and high crystallinity could be prepared by a remote plasma enhanced metalorganic vapor deposition after the pretreatment of substrates with rf nitrogen plasma. Smooth AIN thin layer was formed on the (0001) sapphire substrate by the nitrogen plasma pretreatment for an hour. The AIN layer provided the nucleation sites for the subsequent buffer layer growth, thus highly preferred (0001) GaN buffer layers could be grown on the pretreated substrate. Formation of the AIN layer on sapphire and the surface smoothness were affected by pretreatment parameters such as exposure time, temperature, and rf power.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahiama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Appl. Phys. Lett. 68, 2105 (1996)Google Scholar
2. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., Sawaki, N., J. Cryst. Growth 98, 209 (1989)Google Scholar
3. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991)Google Scholar
4. Moustakas, T. D. and Molnar, R. J., Mat. Res. Soc. Syrup. Proc. Vol. 281, 753 (1993)Google Scholar
5. Moustakas, T. D., Lei, T. and Molnar, R. J., Physica B 185, 36 (1993)Google Scholar
6. Lin, M. E., Sverdlov, B. N., and Morkoc, H., J. Appl. Phys. 74, 5038 (1993)Google Scholar
7. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T., Minagawa, S., J. Appl. Phys. 79, 3487 (1996)Google Scholar
8. Hwang, C.-Y., Schunnan, M. J., Mayo, W. E., Li, Y., Lu, Y., Liu, H., Salagaj, T. and Stall, R. A., J. Vac. Sci. Technol. A 13, 672 (1995)Google Scholar
9. Grandjean, N., Massies, J. and Leroux, M., Appl. Phys. Lett. 69, 2071 (1996)Google Scholar
10. Sitar, Z., Smith, L. L., Davis, R. F., J. Cryst. Growth. 141. 11 (1994)Google Scholar