Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T23:40:48.534Z Has data issue: false hasContentIssue false

New UV Light Emitter Based on AlGaN Heterostructures with Graded Electron and Hole Injectors

Published online by Cambridge University Press:  11 February 2011

M.A.L. Johnson
Affiliation:
Department of Material Science and Engineering, NC State University Raleigh, NC 27695–7907
J.P. Long
Affiliation:
Department of Physics, NC State University
J. F. Schetzina
Affiliation:
Department of Electrical and Computer Engineering, NC State University
Get access

Abstract

New ultraviolet (UV) light emitting device structures address the problems of small carrier concentrations and large band-offsets in wide bandgap Aluminum Gallium Nitride (AlGaN) heterostructures through the use of graded epilayers for electron and hole injection. For light emission at 280–290 nm, a multiple-quantum-well separate confinement heterostructure (MQWSCH) employs a graded AlGaN structure for the injection of majority carriers from the metal-semiconductor contact layers into the spacecharge region of the pn-junction with a higher bandgap energy. Sample LED mesa devices were fabricated and have shown light emission of 289 nm under a forward bias of 12V (20mA). These results provide a ‘proof-of-concept’ for this new graded device structure which can be employed for the development of both UV-LEDs and laser diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B., 10, 1237 (1992)Google Scholar
2. Nakamura, S., Fasol, G., The Blue Laser Diode - GaN based Light Emitters and Lasers (Springer-Verlag, Heidelberg, 1997).Google Scholar
3. Crawford, M.G. MRS Bulletin (Oct. 2000) p27.Google Scholar
4. Han, J., Figiel, J., Petersen, G., Myers, S., Crawford, M., Banas, M. and Hearne, S., MRS Internet J. Nitride Semicond. Res. 5S1, W6.2 (2000).Google Scholar
5. Chitnis, A., Jain, P. Z., Adivarahan, V., Wu, S., Jie, S., Shatalov, M., Yang, J.W.; Simin, G, Japanese, M.A. Khan J. Appl. Phys. 41. L450 (2002)Google Scholar
6. Brown, J. D., Matthews, J., Harney, S., Boney, J. C., Schetzina, J. F., Benson, J. D., Dang, K. V., Nohava, T., Yang, W., Krishnankutty, S. MRS Internet J. Nitride Semicond. Res. 5S1, W1.9 (2000).Google Scholar
7. Pine, S., Hendrickson, J., Cram, D. and Hammond, G. Organic Chemistry, 4th Ed. McGraw-Hill: New York (1980) p789794.Google Scholar
8. Li, J., Oder, T.N., Nakarmi, M.L., Lin, J.Y. and Jiang, H.X., Appl. Phys. Lett., 80, 1210 (2002).Google Scholar
9. Schubert, E.F., Grieshaber, W. and Goepfert, I.D., Appl. Phys. Lett. 69 (24) 3737 (1996).Google Scholar
10. Yasan, A., McClintock, R., Darvish, S.R., Lin, Z., Mi, K., Kung, P., Razeghi, M., Appl. Phys. Lett., 80, 2108 (2002).Google Scholar
11. Allyn, CL, Gossard, AC, and Wiegmann, W., Appl Phys. Lett., 36, 373 (1980).Google Scholar
12. Phillips, M.C., Wang, M.W., Swenberg, J.F., McCaldin, J.O. and McGill, T.C., Appl. Phys. Lett. 61, 1962 (1992).Google Scholar
13. Johnson, M.A.L., Yu, Zh., Brown, J.D., Koeck, F.A., El-Masry, N.A., Kong, H.S., Edmond, J.A., Cook, J.W. Jr, Schetzina, J.F., MRS Internet J. Nitride Semicond. Res. 4S1, G5.10 (1999).Google Scholar
14. Nam, O-H, Bremser, MD, Zheleva, TS, Davis, RF, Appl. Phys. Lett., 71, 2638 (1997).Google Scholar