Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T02:09:23.845Z Has data issue: false hasContentIssue false

Neutron Activation Measurements of As and Ga Loss During Transient Annealing of Gaas

Published online by Cambridge University Press:  15 February 2011

A. Rose
Affiliation:
Csiro, Division Of Chemical Physics, L.H.R.L., N.S.W. 2232. Australia
J.T.A. Pollock
Affiliation:
Csiro, Division Of Chemical Physics, L.H.R.L., N.S.W. 2232. Australia
M.D. Scott
Affiliation:
Csiro, Division Of Chemical Physics, L.H.R.L., N.S.W. 2232. Australia
F.M. Adams
Affiliation:
Faculty Of Engineering, R.M.I.T., Vic. 3000.
J.S. Williams
Affiliation:
Faculty Of Engineering, R.M.I.T., Vic. 3000.
E.M. Lawson
Affiliation:
Australian Atomic Energy Commission, L.H.R.L. N.S.W. 2232. Australia
Get access

Abstract

Significant dissociation is normally detected under non-optimised transient annealing of GaAs. We have utilised neutron activation to measure As and Ga loss from virgin and implanted material annealed under various transient conditions. Complementary RBS data are reported. In particular, surface dissociation has been measured as a function of pulsed ruby laser power and for several combinations of time and surface temperature using an incoherent light source and a vitreous carbon strip heater.

The results indicate that neutron activation analysis offers a powerful tool to identify the conditions required to minimise GaAs dissociation during annealing. For examplq ruby laser pulses of energy 0.29–1.38 J cm−2 caused As loss of 4 – 90 × 10 cm−2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]“Laser and Electron Beam Processing of Electronic Materials”, Eds. Anderson, C. L., Celler, G. K. and Rozgoni, G. A., ECS, Princeton, N.J. (1980).Google Scholar
[2]“Laser and Electron Beam Solid Interactions and Materials Processing”, Eds. Gibbons, J. F., Hess, L. D. and Sigmon, T. W., North Holland, N.Y. (1981).Google Scholar
[3]Williams, J. S. and Harrison, H. B., ref 2, page 209.Google Scholar
[4]Gamo, K., Yuba, Y., Oraby, A. H., Wurakami, K., Namba, S. and Kawaski, K., “Laser and Electron Beam Processing of Materials” Eds. White, C. W. and Peercy, P. S., Academic Press, N.Y. 1980.Google Scholar
[5]Cullis, A. C., Welser, H. C. and Bailey, P., J. Phys. E. Sci. Inst. 12, 452 (1979).Google Scholar
[6]Wood, R. F., Lowndes, D. H. and Christie, W. H., ref. 2, page 231.Google Scholar
[7]Lowndes, D. H., Cleland, J. W., Christie, W. H. and Eby, R. E., ref. 2, page 22.Google Scholar
[8]Barnes, P. A., Leamy, H. J., Poate, J. W., Ferris, S. D., Williams, J. S. and Celler, G. K., Appl. Phys. Lett. 33, 965 (1978).Google Scholar
[9]Fletcher, J., Narayan, J. and Lowndes, D. H., page 421, “Defects in Semiconductors”, Eds. Narayan, J. and Tan, T. Y., North Holland, N.Y. (1981).Google Scholar
[10]Anderson, C. L., page 653, “Laser and Electron Beam Interaction with Solids”, Eds. Appleton, B. R. and Celler, G. K., North Holland, N.Y. (1982).Google Scholar
[11]Davies, D. E., McNally, P. J., Ryan, P. J., Soda, K. J. and Comer, J. J., Presented at GaAs conference, Japan, Sept. 1982.Google Scholar
[12]Shah, M. J., Ahmed, A., Sanders, I. R. and Singleton, J. F., Elect. Letts. 16, 433 (1980).Google Scholar
[13]Chapman, R. L., Fan, J. C. C., Donnelly, J. P. and Tsaur, B-Y., Appl. Phys. Lett. 40, 805 (1982).Google Scholar