Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T06:20:15.108Z Has data issue: false hasContentIssue false

Nanoscale Properties of SrBi2Ta2O9 Thin Films

Published online by Cambridge University Press:  21 March 2011

A. Gruverman
Affiliation:
Sony Corporation, Yokohama Research Center, Hodogaya-ku, Yokohama 240-0005, Japan
C. Isobe
Affiliation:
Sony Corporation, Core Technology Development Center, Atsugi 243-0014, Japan
M. Tanaka
Affiliation:
Sony Corporation, Core Technology Development Center, Atsugi 243-0014, Japan
Get access

Abstract

Piezoresponse scanning force microscopy (PFM) was applied to study the nanoscale mechanism of retention loss in SrBi2Ta2O9 (SBT) thin films. Experiments were conducted by performing local polarization reversal within an individual grain with subsequent imaging of a resulting domain structure at different time intervals. The retention behavior of the films was studied as a function of switching conditions and electrode material. SFM was also used for nanoscale mapping of leakage current sites and investigation of electrical conduction mechanism at these sites. For the first time, the development of dielectric breakdown in SBT films was directly observed at nanoscale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J. F. and Araujo, C.A. Paz de, Science 246, 1400 (1989).Google Scholar
2. Batra, I. P. and Silverman, B. D., Sol. St. Commun. 11, 291 (1972).10.1016/0038-1098(72)91180-5Google Scholar
3. Mehta, R. R., Silverman, B. D. and Jacobs, J. T., J. Appl. Phys. 44, 3379 (1973).Google Scholar
4. Gruverman, A., Auciello, O., and Tokumoto, H., Integrated Ferroelectrics, 19, 49 (1998).Google Scholar
5. Gruverman, A., Tokumoto, H., Prakash, S. A., Aggarwal, S., Yang, B., Wuttig, M., Ramesh, R., Auciello, O., and Venkatesan, V., Appl. Phys. Lett. 71, 3492 (1997).Google Scholar
6. Hidaka, T., Maruyama, T., Sakai, I., Saitoh, M., Wills, L. A., Hiskes, R., Dicarolis, S. A. and Amano, J., Integrated Ferroelectrics 17, 319 (1997).Google Scholar
7. Yoo, I. K., Kim, B. M., and Park, S.J., Mat. Res. Soc. Symp. Proc. Vol 493, 299 (1998).10.1557/PROC-493-299Google Scholar
8. Ganpule, C. S., Stanishevsky, A., Su, Q., Aggarwal, S., Melngailis, J., Williams, E., and Ramesh, R., Appl. Phys. Lett. 75, 409 (1999).Google Scholar
9. Hong, J. W., Jo, W., Kim, D. C., Cho, S. M., Nam, H. J., Lee, H. M., and Bu, J. U., Appl. Phys. Lett. 75, 3183 (1999).Google Scholar
10. Jo, W., Kim, D. C., and Hong, J. W., Appl. Phys. Lett. 76, 390 (2000).Google Scholar
11. Hong, S., Colla, E. L., Kim, E., Taylor, D. V., Tagantsev, A. K., Muralt, P., No, K. and Setter, N., J. Appl. Phys. 86, 607 (1999).Google Scholar
12. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., Appl. Phys. Lett. 75, 1793 (1999).Google Scholar
13. Araujo, C. A., Cuchiaro, J., Macmillan, L. D., Scott, M. C., Scott, J. F., Nature 374, 627 (1995).10.1038/374627a0Google Scholar
14. Amanuma, K., and Kunio, T., Jap. J. Appl. Phys. 35, Part 1, 5229 (1996).Google Scholar
15. Shimada, Y., Nakao, K., Inoue, A., Azuma, M., Uemoto, Y., Fujii, E., and Otsuki, T., Appl. Phys. Lett. 71, 2538 (1997).Google Scholar
16. Grossmann, M., Lohse, O., Bolten, D., Boettger, U., Waser, R., Hartner, W., Kastner, M., and Schindler, G., Appl. Phys. Lett. 76, 363 (2000).Google Scholar
17. Gruverman, A., Appl. Phys. Lett. 75, 1452 (1999).10.1063/1.124722Google Scholar
18. Isobe, C., Ami, T., Hironaka, K., Watanabe, K., Sugiyama, M., Nagel, N., Katori, K., Ikeda, Y., Gutleben, C. D., Yamoto, H. and Yagi, H., Integrated Ferroelectrics, 14, 95 (1997).Google Scholar
19. Gruverman, A., Hironaka, K., Ikeda, Y., Satyalakshmi, K.M., Pignolet, A., Alexe, M., Zakharov, N.D. and Hesse, D., Integrated Ferroelectrics 27, 159 (1999).10.1080/10584589908228465Google Scholar
20. Gruverman, A., and Ikeda, Y., Jpn. J. Appl. Phys. 37, Part 2, L939 (1998).10.1143/JJAP.37.L939Google Scholar
21. Benedetto, J. M., Moore, R. A., and McLean, F. B., J. Appl. Phys. 75, 460 (1994).10.1063/1.355875Google Scholar
22. Scott, J. F., Integrated Ferroelectrics 9, 1 (1995).Google Scholar
23. Scott, J. F., Annu. Rev. Mater. Sci. 28, 79 (1998).Google Scholar
24. Miller, R. C. and Weinreich, G., Phys. Rev. 117, 1460 (1960).Google Scholar
25. Benedetto, J. M., Moore, R. A., and McLean, F. B., J. Appl. Phys. 75, 460 (1994).Google Scholar
26. Xie, Z., Luo, E. Z., Xu, J. B., Wilson, I. H., Peng, H. B., Zhao, L. H., and Zhao, B. R., Appl. Phys. Lett. 76, 1923 (2000).Google Scholar
27. Yoshida, C., Yoshida, A., and Tamura, H., Appl. Phys. Lett. 75, 1449 (1999).Google Scholar