Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-29T07:41:25.168Z Has data issue: false hasContentIssue false

Nano-scale Investigation of Light Scattering at Randomly Textured Light Trapping Structures for Thin-film Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Karsten Bittkau
Affiliation:
k.bittkau@fz-juelich.de, Forschungszentrum Jülich, Institut für Energieforschung, Leo-Brandt-Straße, Jülich, 52425, Germany
Thomas Beckers
Affiliation:
t.beckers@fz-juelich.de, Forschungszentrum Jülich, Institut für Energieforschung, Leo-Brandt-Straße, Jülich, 52425, Germany
Carsten Rockstuhl
Affiliation:
carsten.rockstuhl@uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörpertheorie und -optik, Max-Wien-Platz 1, Jena, 07743, Germany
Stephan Fahr
Affiliation:
stephan.fahr@uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörpertheorie und -optik, Max-Wien-Platz 1, Jena, 07743, Germany
Falk Lederer
Affiliation:
falk.lederer@uni-jena.de, Friedrich-Schiller-Universität Jena, Institut für Festkörpertheorie und -optik, Max-Wien-Platz 1, Jena, 07743, Germany
Reinhard Carius
Affiliation:
r.carius@fz-juelich.de, Forschungszentrum Jülich, Institut für Energieforschung, Leo-Brandt-Straße, Jülich, 52425, Germany
Get access

Abstract

We report on nano-scale optical effects of amorphous silicon layer conformally deposited on randomly textured zinc oxide layers on glass substrates investigated by near-field scanning microscopy. Such textured layers are used in thin-film photovoltaic devices to enhance light trapping. Experimental results are compared to theoretical data, obtained from large scale finite-difference time-domain simulations. Light localization on the surface of the textured interface and a focusing of light by the structure further away are observed. The measurements are compared with simulations, which provide additional insight into the light intensity distribution inside the solar cell on a nm-scale. It will be shown how this information can be used to optimize light trapping in thin-film solar cells using an amorphous silicon solar cell as an example.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovitch, E. Cody, G. D. IEEE Trans. Electron. Devices ED-29, 300 (1982).Google Scholar
2 Yablonovitch, E. J. Opt. Soc. Am. 72, 899 (1982).Google Scholar
3 Mizuhashi, M. Gotoh, Y. and Adachi, K. Jpn. J. Appl. Phys. 27, 2053 (1988).Google Scholar
4 Kluth, O. Rech, B. Houben, L. Wieder, S. Schöpe, G., Beneking, C. Wagner, H. Löffl, A., and Schock, H. W. Thin Solid Films 351, 247 (1999).Google Scholar
5 Bittkau, K. Lienau, C. and Carius, R. Phys. Rev. B 76, 035330 (2007).Google Scholar
6 Rockstuhl, C. Lederer, F. Bittkau, K. and Carius, R. Appl. Phys. Lett. 91, 171104 (2007).Google Scholar
7 Berginski, M. J. Hüpkes, Schulte, M. Schöpe, G., Stiebig, H. Rech, B. and Wuttig, M. J. Appl. Phys. 101, 074903 (2007).Google Scholar
8 Lambertz, A. Finger, F. and Carius, R. Proc. 3rd World Conference on Photovoltaic Solar Energy Conversion, 1804 (2003).Google Scholar
9 Behme, G. Richter, A. Süptitz, M., and Lienau, Ch. Rev. Sci. Instrum. 68, 3458 (1997).Google Scholar
10 Karrai, K. and Grober, R. D. Appl. Phys. Lett. 66, 1842 (1995).Google Scholar