Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:11:21.555Z Has data issue: false hasContentIssue false

Nanolithographic Manipulated Cutting of Aligned Metal Oxide Nanowires

Published online by Cambridge University Press:  21 March 2011

L.J. Campbell
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148.
Y.X. Chen
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148.
W.L. Zhou
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148.
Get access

Abstract

Controlling the characteristics of nanowires in order to later construct nanoarchitecture and nanocomponents for nanodevice and nanosensor applications is essential. Metal oxide nanowires are aligned using the Langmuir-Blodgett (LB) technique to uniaxially compress the nanowires. A surfactant monolayer of metal oxide nanowires is fabricated, and then compressed on an aqueous subphase. The compression yields an array of aligned nanowires, which is transferred to a planar substrate. Cutting areas of the array are defined by electron beam nanolithography. After an etching process, it is shown that the metal oxide nanowires have been successfully cut. With further refinement of this technique, the nanowires can be used to construct basic building blocks of nanodevices and nanosensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jo, S.H., Lao, J.Y., Ren, Z. F., Farrer, R.A., Baldacchini, T., and Fourkas, J.T.. App. Phys. Lett. vol. 83, no. 23, 48214823 (2003).Google Scholar
2. Kim, T.W., Kawazoe, T., Yamazaki, S., Ohtsu, M., and Sekiguchi, T.. App. Phys Lett. vol. 84, no. 17, 33583360 (2004).Google Scholar
3. Li, S.Y., Ling, P., Lee, C.Y., Tseng, T.Y.. Jounral of Applied Physics. vol. 95, no. 7, 37113716 (2004).Google Scholar
4. Chang, Y.Q., Wang, D.B., Luo, X.H., Xu, X.Y., Chen, X.H., Li, L., Chen, C.P., Wang, R.M., Xu, J., and Yu, D.P.. App. Phys. Lett. vol 83, no. 19, 40204022 (2003)Google Scholar
5. Geng, B.Y., Wang, G.Z., Jiang, Z., Xie, T., Sun, S.H., Meng, G. W., and Zhang, L.D.. App. Phys. Lett., vol 82, no. 26, 47914793 (2003).Google Scholar
6. Zhou, J., Deng, S.Z., Xu, N.S., Chen, J., and She, J.C.. Appl Phys. Lett. vol 83, no. 13, 26532655 (2003).Google Scholar
7. Pan, Z. W., Dar, Z.R., Wang, Z.L., Science vol. 291, 1947 (2001).Google Scholar
8. Zhang, Y., Jia, H., Wnag, R., Chen, C.. Luo, X., and Yu, D.. App. Phys. Lett. vol 83, no. 22, 46314633 (2003).Google Scholar
9. Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., and Yang, P.. Nano Letters. vol. 3, no. 9, 12291233 (2003).Google Scholar
10. Whang, D., Jin, S., Wu, Y., Lieber, C.. Nano Letters. vol. 3, no. 9, 12551259 (2003).Google Scholar
11. Kim, F., Kwan, S., akana, J., and Yang, P.. J. Am. Chem. Soc. Vol. 123, 43604361 (2001)Google Scholar
12. Lustig, S., Boyes, E., French, R., Gierke, T., Harmer, M., Hietpas, P., Jagota, A., McLean, R.S., Mitchell, G. P., Onoa, G.B., and Sams, K.. Nano Letters. vol. 3, no. 8, 10071012 (2003).Google Scholar
13. KSV Inc. KSV 5000: Instruction Manual for Windows 95/98/NT/200. Helsinki, Finland, 2001.Google Scholar