Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T22:01:44.667Z Has data issue: false hasContentIssue false

Nanocomposites Containing Nanoclusters of Metals or Semiconductors

Published online by Cambridge University Press:  15 February 2011

Kimberly J. Burnam
Affiliation:
Vanderbilt University, Department of Chemistry, Nashville, TN 37235
Joseph P. Carpenter
Affiliation:
Vanderbilt University, Department of Chemistry, Nashville, TN 37235
Charles M. Lukehart
Affiliation:
Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332-0245
Stephen B. Milne
Affiliation:
Vanderbilt University, Department of Chemistry, Nashville, TN 37235
S. R. Stock
Affiliation:
Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332-0245
R. Glosser
Affiliation:
University of Texas at Dallas, Department of Physics, Richardson, TX 75083
Bobby D. Jones
Affiliation:
University of Texas at Dallas, Department of Physics, Richardson, TX 75083
Get access

Abstract

Neutral, low-valent complexes of transition metals or an organometallic compound of Ge are prepared containing ancillary ligands which bear silicate ester or (alkoxy)silicon functional groups. Inclusion of these molecules as dopant species in a conventional sol-gel synthesis of silica xerogels affords silica xerogels in which dopant molecules have presumably been covalently incorporated into the xerogel matrix with uniform and high dispersion. Subsequent thermal treatment of these molecularly doped xerogels under reducing or oxidizing/reducing conditions gives nanocomposites containing nanoclusters of metals or semiconductor substances. By this procedure, nanocomposites containing nanoclusters of Ag, Cu, Pt, Os, CCo3, Fe2P, Ni2P, or Ge have been prepared. Preliminary evidence for the formation of a nanocomposite containing Pt-Sn nanoclusters derived from a bimetallic molecular precursor is also presented. Characterization data for the nanocomposite materials include TEM, electron diffraction, EDS, XRD, and selected use of micro-Raman spectroscopy. These results support the hypothesis that covalent incorporation of molecular precursors containing low-valent metals into a silica xerogel can afford nanocluster phases with high dispersion, relatively small particle size, and unusual elemental composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stucky, G. D., Naval Res. Rev. 43, 28 (1991); G. Schmid, Chem. Rev. 92, 1709 (1992); J. H. Sinfelt and G. D. Meitzner, Acc. Chem. Res. 26, 1 (1993); M. L. Steigerwald and L. E. Brus, Acc. Chem. Res. 23, 183 (1990); Y. Wang, Acc. Chem. Res. 24, 133 (1991); H. Weller, Angew. Chem. Int. Ed. Engl. 32, 41 (1993); H. Weller, Adv. Mater. 5, 88 (1993).Google Scholar
2. Breitscheidel, B., Zieder, J. and Schubert, U., Chem. Mater. 3, 559 (1991).Google Scholar
3. Niebergall, V. H., Makromol. Chem. 59, 218 (1962).Google Scholar
4. Akerstrom, S., Arkiv Kemi 24, 505 (1965).Google Scholar
5. Baird, W. C., J. Am. Chem. Soc. 85, 1009 (1963).Google Scholar
6. Cabeza, J. A. and Maitlis, P. M., J. Chem. Soc., Dalton Trans. 573 (1985).Google Scholar
7. Davies, J. A., Mierzwiak, J. G. and Syed, R., J. Coord. Chem. 17, 25 (1988).Google Scholar
8. Seyferth, D., Rudie, C. N. and Nestle, M. O., J. Organomet. Chem. 178, 227 (1979).Google Scholar
9. Cundy, C. S., J. Organomet. Chem. 69, 305 (1974).Google Scholar
10. Therien, M. J. and Trogler, W. C., Inorg. Synth. 28, 173 (1990).Google Scholar
11. Davidson, W. E., Hills, K. and Henry, M. C., J. Organomet. Chem. 3, 285 (1965).Google Scholar
12. Eaborn, C., Pidcock, A. and Steele, B. R., J. Chem. Soc., Dalton Trans. 809 (1975).Google Scholar
13. Adachi, T. and Sakka, S., J. Mater. Sci. 22, 4407 (1987).Google Scholar
14. Gacoin, T., Chaput, F., Boilot, J. P. and Jaskierowicz, G., Chem. Mater. 5, 1150 (1993).Google Scholar
15. Lisiecki, I. and Pileni, M. P., J. Am. Chem. Soc. 115, 3887 (1993).Google Scholar
16. Psaro, R., Dossi, C., Fisco, A. and Ugo, R., Res. Chem. Intermed. 15, 31 (1991).Google Scholar
17. Duteil, A., Queau, R., Chaudret, B., Mazel, R., Roucau, C. and Bradley, J. S., Chem. Mater. 5, 341 (1993).Google Scholar
18. Fujii, M., Hayashi, S. and Yamamoto, K., Jpn. J. Appl. Phys. 30, 687 (1991).Google Scholar
19. Fox, J. R., Pesa, F. A. and Curatolo, B. S., U. S. Patent No. 4 632 774 (30 December 1986).Google Scholar
20. Kalenik, Z., Ladna, B., Wolf, E. E. and Fehlner, T. P., Chem. Mater. 5, 1247 (1993).Google Scholar
21. Fujii, H., Uwatoko, Y., Motoya, K., Ito, Y. and Okamoto, T., J. Phys. Soc. Jpn. 57, 2143 (1988).Google Scholar
22. Seeger, R. E. Jr., Morgan, N. H. and Landry, J. R. Jr., U. S. Patent No 4 759 970 (26 July 1988).Google Scholar
23. Sharon, M., Tamizhmani, G., Levy-Clement, C. and Rioux, J., Sol. Cells 26, 303 (1989).Google Scholar
24. Paine, D. C., Caragianis, C., Kim, T. Y., Shigesato, Y. and Ishahara, T., Appl. Phys. Lett. 62, 2842 (1993).Google Scholar
25. Sinfelt, J. H., Bimetallic Catalysis; Discoveries, Concepts, and Applications, (Wiley, New York, 1983), pp. 130157.Google Scholar
26. Xu, C., Peck, J. W. and Koel, B. E., J. Am. Chem. Soc. 115, 751 (1993).Google Scholar
27. Srinivasan, R., Rice, L. A. and Davis, B. H., J. Catal. 129, 257 (1991).Google Scholar
28. Lukehart, C. M., Carpenter, J. P., Milne, S. B. and Burnam, K. J., Chemtech 23, No. 8, 29 (1993).Google Scholar