Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T13:47:01.851Z Has data issue: false hasContentIssue false

Nacre-like TiO2 - and ZnO- Based Organic / Inorganic Hybrid Systems

Published online by Cambridge University Press:  17 March 2011

Zaklina Burghard
Affiliation:
Institut für Nichtmetallische Anorganische Materialien, Universitöt Stuttgart, Stuttgart, 70569, Germany
Luciana Pitta Bauermann
Affiliation:
Institut für Nichtmetallische Anorganische Materialien, Universitöt Stuttgart, Stuttgart, 70569, Germany
Aleksandar Tucic
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, 70569, Germany
Lars P. H. Jeurgens
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, 70569, Germany
Vesna Srot
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, 70569, Germany
Paul Bellina
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, 70569, Germany
Peter Lipowsky
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, 70569, Germany
Rudolf C. Hoffmann
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, 70569, Germany
Elazar Gutmanas
Affiliation:
Technion- Israel Institute of Technology, Haifa, 32000, Israel
Joachim Bill
Affiliation:
Institut für Nichtmetallische Anorganische Materialien, Universitöt Stuttgart, Stuttgart, 70569, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, 70569, Germany
Get access

Abstract

A bioinspired approach combining chemical bath deposition (CVD) of oxides with layer-by-layer (LBL) assembly of organic polymers has been used to prepare two different types of organic/inorganic multilayer composite films, whose morphology resembles that of naturally occurring nacre. Both process steps allow for a precise control of the layer thickness, thus enabling to tailor the architecture of the multilayer composites. The first type of composite films comprised of TiO2 layers, separated by organic interlayer composed of several oppositely charged polyelectrolytes, while the second type of composite films contained ZnO as the inorganic and poly (amino acids) as the organic component. AFM investigations revealed a granular structure of the inorganic layers which originates from the oxide particles. TEM investigation disclosed that the TiO2 particles are amorphous, while the ZnO particles are crystalline. Moreover, TEM cross-sectional analysis of the composite films confirmed the presence of inorganic layers that are well-separated by organic layers, although signatures of partial interpenetration have been observed at the interfaces. The hardness and Young's modulus of both types of composite films, as determined by nanoindentation testing, increased in comparison to the monolithic oxide films. The enhanced mechanical performance underlines the effectiveness of combining layers of different shear moduli into an alternate architecture.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ashby, M. F., Gibson, L. J., Wegst, U., Olive, R., Proc. R. Soc. Lond. A 450, 123 (1995).Google Scholar
[2] Jackson, A. P., Vincent, J. F. V., Turner, R.M., Proc. R. Soc. Lond. B 234, 415 (1988).Google Scholar
[3] Gao, H. J., Ji, B. H., Jager, I. L., Artz, E., Fratzel, P., Proc. Natl. Acad. Sci. USA, 100, 5597 (2003).Google Scholar
[4] Fratzl, P., Gupta, H. S., Paschalis, E. P., Roschger, P., J. Mat. Chem. 14, 2115 (2004).Google Scholar
[5] Fu, G., Qui, S. R., Orne, C. A., Morse, D. C., Yoreo, J. J. De, Adv. Mater. 17, 2678 (2005).Google Scholar
[6] Guire, M.R. De, Niesen, T.P., Supothina, S., Wolff, J., Bill, J., Subenik, C.N., Aldinger, F., Heuer, A.H., Rühle, M., Z. Metallk. 89, 89(1998).Google Scholar
[7] Kamat, S., Su, X., Ballarini, R., Heuer, A. H., Nature 405,1036 (2000).Google Scholar
[8] Mann, S., Nature 332, 119 (1988).Google Scholar
[9] Kaplan, D.L., Current Opinion in Solid State 3, 232 (1998).Google Scholar
[10] Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M., Gruner, S.M., Science, 273, 892 (1996).Google Scholar
[11] Yamabi, S., Imai, H., Awazu, K., Chemistry letters, 7, 714 (2002).Google Scholar
[12] LeBeron, P.C., Wang, Z., Pijnnavia, T.J., Applied clay science 15, 11 (1999).Google Scholar
[13] Hitzky, E.R. The chemical record 3, 88 (2003).Google Scholar
[14] Agarwal, M., Guire, M.R. De, Heuer, A.H., J. Am. Ceram. Soc. 80, 2967 (1997).Google Scholar
[15] Burghard, Z., Tucic, A., L.P.H.Jeurgens, Hoffmann, R.C., Bill, J., Aldinger, F., Adv. Mater. accepted.Google Scholar
[16] Doerner, M. F., Nix, W. D., J. Mater. Res. 1, 601 (1986).Google Scholar
[17] Oliver, W. C., Pharr, G. M., J. Mater. Res. 7, 1564 (1992).Google Scholar
[18] Nix, W. D., Mater. Sci. Eng. A 237, 37 (1997).Google Scholar
[19] Saha, R., Nix, W. D., Acta Mat. 50, 23 (2002).Google Scholar
[20] Oliver, W. C., Pharr, G. M., J. Mater. Res. 19, 3 (2004).Google Scholar
[21] Jung, Y., Lawn, B. R., Martyniuk, M., Huang, H., Hu, X. Z., J. Mater. Res. 2004, 19, 3076.Google Scholar
[22] Olofinjana, A. O., Bell, J. M., Jömting, A. K., Wear 241, 174 (2000).Google Scholar
[23] Hoffman, R. C., Bartolome, J. C., Wildhack, S., Jeurgens, L. P. H., Bill, J., Aldinger, F., Thin Solid Films 478, 164 (2005).Google Scholar
[24] Decher, G., Science 277, 1232 (1997).Google Scholar
[25] Lipowsky, P., Hoffmann, R. C., Bill, J., Aldinger, F., Adv. Funct. Mater. accepted.Google Scholar
[26] Lipowsky, P., Burghard, Z., Jeurgens, L.P.H., Bill, J., Aldinger, F., Nano Letters, submitted.Google Scholar
[27] Wang, J., Li, W. Z., Li, H. D., Shi, B., Luo, J. B., Thin Solid Films 366, 509 (2000).Google Scholar
[28] Martrinez, E., Romero, J., Lousa, A., Esteve, J., J.Phys. D: Appl. Phys. 35, 1880 (2002).Google Scholar
[29] Koehler, J. S., Phys. Rev. B 2, 547 (1970).Google Scholar
[30] Salomöki, M., Laiho, T., Kankare, J., Macromolecules 37, 9585 (2004).Google Scholar
[31] Kim, S. H., Baik, Y. J., Kwon, D., Surface &Coatings technology 187, 47 (2004).Google Scholar
[32] Shin, H., Argawal, M., Guire, M. R. De, Heuer, A. H., Acta Mater. 46, 801 (1998).Google Scholar
[33] Mammeri, F., Bourhis, E. L., Rozes, L., Sanchez, C., J. Mater. Chem. 15, 3787 (2005).Google Scholar
[34] Bauermann, L. Pitta, Campo, A. del, Bill, J., Aldinger, F., Chem. Mater. 18, 2016 (2006).Google Scholar