Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T02:22:27.160Z Has data issue: false hasContentIssue false

Multifunctional silicone nanocomposites for advanced LED encapsulation

Published online by Cambridge University Press:  29 April 2013

Ying Li
Affiliation:
Department of Materials Science and Engineering and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180, U. S. A.
Peng Tao
Affiliation:
Department of Materials Science and Engineering and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180, U. S. A.
Richard W. Siegel
Affiliation:
Department of Materials Science and Engineering and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180, U. S. A.
Linda S. Schadler
Affiliation:
Department of Materials Science and Engineering and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180, U. S. A.
Get access

Abstract

The addition of high refractive index (RI) inorganic nanoparticles (NPs) to LED encapsulation materials can lead to higher light extraction efficiency. In addition, the NPs can be carriers for additional functionality such as color conversion. Using a simple “grafting-to” approach, bimodal polydimethylsiloxane (PDMS) brushes were grafted onto high-RI ZrO2 NPs. Subsequently, an organic phosphor, 6-[fluorescein-5(6)-carboxamido]hexanoic acid (FCHA), was attached onto the PDMS-grafted ZrO2 NPs via a facile ligand exchange process. The bimodal polymer brush design enables homogenous dispersion of the surface functionalized NPs within the silicone matrix. The functionalized NPs with ∼53 wt% ZrO2 core have a ∼0.08 higher RI than neat silicone, and the NP-filled silicone nanocomposites exhibit a transparency of ∼ 90% in the 550-800 nm wavelength range. In addition, the nanocomposites could be excited at a wavelength around 455 nm by a blue LED and undergo secondary yellow emission at around 571 nm. It is expected that the prepared nanocomposites can be used as high-efficiency, non-scattering, color-tuned materials for advanced LED encapsulation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boardman, L. D.; Thompson, D. S.; C. A. Leatherdale U.S. Patent 0199291 A1, (2006).Google Scholar
Uthirakumar, P.; Suh, E. K.; Hong, C. H.; Lee, Y. S Polymer 46, 46404646 (2005).CrossRefGoogle Scholar
Zhang, L.; Li, B.; Lei, B.; Hong, Z.; Li, W., J. Lumin. 128, 6773 (2008).CrossRefGoogle Scholar
Mont, F. W; Kim, J. K.; Schubert, M. F.; Schubert, E. F.; Siegel, R. W., J. Appl. Phys. 103, 16 (2008).CrossRefGoogle Scholar
Bando, K.; Sakano, K.; Noguchi, Y.; Shimizu, Y., J. Light and Vis. Env. 22, 25 (1998).CrossRefGoogle Scholar
Li, Y.; Tao, P.; Viswanath, A.; Benicewicz, B. C.; Schadler, L. S, Langmuir 29, 12111220 (2013).CrossRefGoogle Scholar
Tao, P.; Li, Y.; Siegel, R. W.; Schadler, L. S, J. Mater. Chem. C 1, 8694 (2013).CrossRefGoogle Scholar
Garnweitner, G.; Goldenberg, L. M.; Sakhno, O. V.; Antonietti, M.; Niederberger, M.; Stumpe, J., Small 3, 16261632 (2007).CrossRefGoogle Scholar
White, M. A; Johnson, J. A.; Koberstein, J. T.; Turro, N. J., J. Am. Chem. Soc. 128, 1135611357 (2006).CrossRefGoogle Scholar
Tao, P.; Li, Y.; Rungta, A.; Viswanath, A.; Gao, J.; Benicewicz, B. C.; Siegel, R. W.; Schadler, L. S, J. Mater. Chem. 21, 1862318629 (2011).CrossRefGoogle Scholar
Tao, P.; Viswanath, A.; Li, Y.; Siegel, R. W.; Benicewicz, B. C.; Schadler, L. S, Polymer 54, 16391646 (2013).CrossRefGoogle Scholar