Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-14T16:55:51.601Z Has data issue: false hasContentIssue false

Monitoring the growth of microcrystalline silicon deposited by plasma-enhanced chemical vapor deposition using in-situ Raman spectroscopy

Published online by Cambridge University Press:  16 August 2011

S. Muthmann*
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
F. Köhler
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
M. Hülsbeck
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
M. Meier
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
A. Mück
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Schmitz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
W. Appenzeller
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Carius
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
A. Gordijn
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

A novel setup for Raman measurements under small angles of incidence during the parallel plate plasma enhanced chemical vapor deposition of μc-Si:H films is described. The possible influence of disturbances introduced by the setup on growing films is studied. The substrate heating by the probe beam is investigated and reduced as far as possible. It is shown that with optimized experimental parameters the influence of the in-situ measurements on a growing film can be neglected. With optimized settings, in-situ Raman measurements on the intrinsic layer of a microcrystalline silicon solar cell are carried out with a time resolution of about 40 s corresponding to 20 nm of deposited material during each measurement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., Wagner, H., Sol. Energy Mater. Sol. Cells 62, 97 (2000)10.1016/S0927-0248(99)00140-3Google Scholar
2. Collins, R.W., Ferlauto, A.S., Ferreira, G.M., Chen, C., Koh, J., Koval, R.J., Lee, Y., Pearce, J.M., Wronski, C.R., Sol. Energy Mater. Sol. Cells 78, 143 (2003)10.1016/S0927-0248(02)00436-1Google Scholar
3. Guo, L., Kondo, M., Matsuda, A., Jpn. J. Appl. Phys. 37, L1116 (1998)10.1143/JJAP.37.L1116Google Scholar
4. Strahm, B., Howling, A.A., Hollenstein, C., Plasma Source Sci T 49, B411 (2007)Google Scholar
5. Kilper, T., van den Donker, M.N., Carius, R., Rech, B., Bauer, G., Repmann, T., Thin Solid Films 516, 4633 (2008)Google Scholar
6. Strahm, B., Howling, A.A., Sansonnens, L., Hollenstein, C., Plasma Sources Sci. Technol. 16, 80 (2007)Google Scholar
7. Muthmann, S., Meier, M., Schmitz, R., Appenzeller, W., Mück, A., Gordijn, A., Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2011.02.037 Google Scholar
8. Muthmann, S., Köhler, F., Meier, M., Hülsbeck, M., Carius, R., Gordijn, A., Phys. Status Solidi-R 5, 144 (2011)10.1002/pssr.201105041Google Scholar
9. Matsuda, A., Thin Solid Films 337, 1 (1999)10.1016/S0040-6090(98)01165-1Google Scholar
10. Vetterl, O., PhD Thesis RWTH Aachen (2001)Google Scholar
11. Carius., R. Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M., Overhof, H. Material Research Soc. Proc. 467, 283 (1997)10.1557/PROC-467-283Google Scholar