Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T10:30:42.337Z Has data issue: false hasContentIssue false

A Molecular Dynamics Study of Zirconium Based on An N-Body Potential: HCP/BCC Phase Transformation and Diffusion Mechanisms in the BCC-Phase

Published online by Cambridge University Press:  16 February 2011

Francois Willaime
Affiliation:
Centre d'Etudes Nucléaires de Saclay,Section de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex, France
Carlo Massobrio
Affiliation:
CNRS, Composés Non-Stoechiométriques, URA 446, Université de Paris Sud, Orsay, France
Get access

Abstract

We propose a simple interatomic potential model for zirconium which successfully reproduces the phonon dispersion curves in both the α- and the β-phases as well as the temperature-induced phase transformation. Two interesting phenomena that help to understand the anomalous diffusion in the high-temperature β-phase are observed: the spontaneous formation of Frenkel-pairs and the highly correlated walk of the vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaufmann, A. R. and Magel, T. T., in Metallurgy of Zirconium, edited by Lustman, B. and Kerze, F. (McGraw-Hill, N. Y., 1955).Google Scholar
2. Burgers, W. G., Physica 1, 561 (1934).Google Scholar
3. Petry, W., Heiming, A., Trampenau, J., Alba, M., Herzig, C. and Schober, H.R., in Proceedings of the 3rd Int. Conf- on Phonon Physics and the 6th Int. Conf. on Phonon Scattering in Condensed Matter, Heidelberg, Aug.89, World Scientific, Singapore (to be published)Google Scholar
4. Willaime, F. and Massobrio, C., Phys. Rev. Lett. 63,2244(1989)Google Scholar
5. Ducastelle, F., J. Phys. (Paris) 31, 1055 (1970), V. Rosato, M. Guillopé and B. Legrand, Phil. Mag. A. 59, 321 (1987).Google Scholar
6. Chen, Y., Fu, C. L., Ho, K.-M., and Harmon, B. N., Phys. Rev. B 31, 6775 (1985); Y.-Y. Ye, Y. Chen, K.-M. Ho, B. N. Harmon, and P. A. Lindgard, Phys. Rev. Lett, 58, 1769 (1987).Google Scholar
7. Ferrario, M. and Ryckaert, J. P., Mol. Phys. 53, 587 (1985).Google Scholar
8. Stassis, C., Zarestky, J., Arch, D., McMasters, O. D., and Harmon, B. N., Phys. Rev. B 18, 2632 (1978)Google Scholar
9. Heiming, A., thesis, ILL Grenoble France 1989 (unpublished)Google Scholar
10. Watson, R. E. and Weinert, M., Phys. Rev. B 30, 1641 (1984).Google Scholar
11. Köhler, U. and Herzig, C., Phil. Mag. A 58, 769 (1988).Google Scholar
12. Herzig, C., in Diffusion in Materials, NATO ASI Series, Series E, 179, 287, (Kluwer Academic Publisher, 1990).Google Scholar
13. Vogl, G., Petry, W., Flottmann, T., and Heiming, A., Phys. Rev B 39, 5025 (1989), W. Petry, T. Flottmann, A. Heiming, J. Trampenau, M. Alba, and G. Vogl, Phys Rev. Lett. 61,722(1988)Google Scholar
14. Doan, N. V. and Adda, Y., Phil. Mag. A, 56, 269 (1987)Google Scholar
15. Fano, A. Da and Jacucci, G., Phys. Rev. Lett. 39, 950 (1977) and Journal of Nuclear Materials 69–70, 549 (1978)Google Scholar
16. Adams, J.B. and Foiles, S., Phys. Rev. B 41, 3316 (1990).Google Scholar
17. Herzig, C. and Eckseler, H., Z. Metallkde. 70, 216 (1979)Google Scholar