Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T04:17:31.282Z Has data issue: false hasContentIssue false

Molecular Dynamics Modeling of Stress and Orientation Dependence of Solid Phase Epitaxial Regrowth

Published online by Cambridge University Press:  01 February 2011

Haoyu Lai
Affiliation:
haoyulai@u.washington.edu, University of Washington, Electrical Engineering, Seattle, Washington, United States
Stephen M Sea
Affiliation:
stephen.m.cea@intel.com, Intel Corporation, Design and Technology Solutions, Hillsboro, Oregon, United States
Harold Kennel
Affiliation:
harold.kennel@intel.com, Intel Corporation, Design and Technology Solutions, Hillsboro, Oregon, United States
Scott T Dunham
Affiliation:
dunham@u.washington.edu, University of Washington, Electrical Engineering, Seattle, Washington, United States
Get access

Abstract

Solid Phase Epitaxial Regrowth (SPER) is of great technological importance in semiconductor device fabrication. A better understanding and accurately modeling of its behavior are vital to the design of fabrication processes and the improvement of the device performance. In this paper, SPER was modeled by Molecular Dynamics (MD) with Tersoff potential. Extensive MD simulations were conducted to study the dependence of SPER rate on growth orientation and uniaxial stress. The results were compared with experimental data. It was concluded that MD with Tersoff potential can qualitively describe the SPER process. For a more quantitatively accurate model, a better interatomic potential are needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cerva, H. and Kusters, K. H., J. Appl. Phys. 66, 4723 (1989).Google Scholar
2 Simoen, E., Gonzalez, M. B., Vissouvanadin, B., Chowdhury, M. K., Verheyen, P., Hikavyy, A., Bender, H., Loo, R., Claeys, C., Machkaoutsan, V., Tomasini, P., Thomas, S., Lu, J. P., Weijtmans, J. W., and Wise, R., IEEE Trans. Electron Devices 55, 925 (2008).Google Scholar
3 Liu, J. P., Li, J., See, A., Zhou, M. S., and Hsia, L. C., Appl. Phys. Lett. 90, 261915 (2007).Google Scholar
4 Roth, J. A. and Olson, G. L., Appl. Phys. Lett. 57, 1340 (1990).Google Scholar
5 Csepregi, L., Kennedy, E. F. and Mayer, J. W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
6 Rudawski, N. G. and Jones, K. S., Phys. Rev. Lett. 100, 165501 (2008).Google Scholar
7 Aziz, M. J., Sabin, P. C. and Lu, G. Q., Phys. Rev. B 44, 9812 (1991).Google Scholar
8 Lu, G. Q., Nygren, E. and Aziz, M. J., J. Appl. Phys. 70, 5323 (1991).Google Scholar
9 Rudawski, N. G., Jones, K. S., Morarka, S., Law, M. E., and Elliman, R. G., J. Appl. Phys. 105, 081101 (2009).Google Scholar
10 Cerva, H. and Kusters, K. H., J. Appl. Phys. 66, 4723 (1989).Google Scholar
11 Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
12 Albenze, E. J. and Clancy, P., Mol. Simul. 31, 11 (2005).Google Scholar
13 Tersoff, J., Phys. Rev. B 38, 9902 (1988).Google Scholar
14 Justo, J. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V., and Yip, S., Phys. Rev. B 58, 2539 (1998).Google Scholar
15 Lenosky, T. J., Sadigh, B., Alonso, E., Bulatov, V. V., Rubia, T. Diaz de la, Kim, J., Voter, A. F., and Kress, J. D., Model. Simul. Mater. Sci. Eng. 8, 825 (2000).Google Scholar
16 Gillespie, B.A., Zhou, X.W., Murdick, D.A., Wadley, H.N.G., Drautz, R., Pettifor, D.G., Phys. Rev. B 75, 155207 (2007).Google Scholar
17 Krzeminski, C., Brulin, Q., Cuny, V., Lecat, E., Lampin, E., and Cleri, F., J. Appl. Phys. 101, 123506 (2007).Google Scholar
18 Gillespie, B.A. and Wadley, H.N.G., J. Crystal Growth 311, 3195 (2009).Google Scholar
19 Custer, J. S., Thompson, M. O., Jacobson, D. C., Poate, J. M., Roorda, S., Sinke, W. C. and Spaepen, S., Appl. Phys. Lett. 64, 437 (1994).Google Scholar
20 Fortner, J. and Lannin, J. S., Phys. Rev. B 39, 5527 (1989).Google Scholar
21 Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J. L., Wang, J. and Moss, S. C., Phys. Rev. Lett. 82, 3460 (1999).Google Scholar
22 Rudawski, N. G. and Jones, K. S., Appl. Phys. Lett. 91, 172103 (2007).Google Scholar