Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T20:06:24.083Z Has data issue: false hasContentIssue false

Modulation Wavelength Dependence of Ion Mdong in Metallic Superlattices*

Published online by Cambridge University Press:  22 February 2011

Dale E. Alexander
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439
Eric E. Fullerton
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439
P.M. Baldo
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439
C.H. Sowers
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439
L. E. Rehn
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439
Get access

Abstract

Ion mixing was studied in polycrystalline Nb/V and single-crystal Mo/V superlattices and in bilayers of the same materials. Systematic variation in the modulation wavelength, Λ, revealed a factor of three decrease in mixing efficiency at small Λ for Nb/V. The decrease appears to coincide with a structural transition in which the Nb/V superlattices become coherent. The results are consistent with a diffusion-induced grain boundary migration interpretation of mixing during irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work funded by the U. S. Department of Energy, BES-DMS, Contract #W-31-109-Eng-38.

References

REFERENCES

1 Gladyszewski, G. and Mikolajczak, P., Appl. Phys. A48, 521 (1989).Google Scholar
2 Le Boite, M. G., Traverse, A., Nevot, L., Pardo, B. and Corno, J., J. Mater. Res. 3, 1089 (1988).Google Scholar
3 Alexander, D.E., Fullerton, E.E., Baldo, P.M., Sowers, C.H. and Rehn, L.E., Nucl. Instrum. Methods B, in press.Google Scholar
4 van de Leur, R. H. M., Schellingerhout, A. J. G., Mooij, J. E. and Tuinstra, F., Solid State Communications 60, 633 (1986).Google Scholar
5 Birch, J., Yamamoto, Y., Hulten, L., Radnoczi, G. and Sundgren, J.-E., Vacuum 41, 1231 (1990).Google Scholar
6 Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).Google Scholar
7 Fullerton, E. E., Schuller, I. K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).Google Scholar
8 Doolittle, L. R., Nucl. Instrum. Methods B9, 334 (1985).Google Scholar
9 Auner, G. W., Cheng, Y.-T., Alkaisi, M.H. and Padmanabhan, K.R., Appl. Phys. Lett. 58, 586 (1991).Google Scholar
10 Fullerton, E. E., Mini, S.M., Bommannavar, A.S., Sowers, C.H., Ehrlich, S.N. and Bader, S.D., in Applications of Synchrotron Radiation Techniques to Materials Science, edited by Perry, D. L., Shinn, N. D., Stockbauer, R. L., D'Amico, K.L. and Terminello, L.J. (Materials Research Society, Pittsburgh, PA, 1993), p. 131.Google Scholar
11 Philofsky, E. M. and Hilliard, J.E., J. Appl. Phys. 40, 2198 (1969).Google Scholar
12 De Boer, F. R., Boom, R. and Miedema, A. R., Physica 101B, 294 (1980).Google Scholar
13 Alexander, D. E., Rehn, L.E., Baldo, P.M. and Gao, Y., Appl. Phys. Lett. 62, 1597 (1993).Google Scholar
14 Durbin, S. M., Cunningham, J.E. and Flynn, C.P., J. Phys. F 17, L59 (1987).Google Scholar