Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-26T21:34:41.128Z Has data issue: false hasContentIssue false

Modifying Nafion with Nanostructured Inorganic Oxides for Proton Exchange Membrane Fuel Cells

Published online by Cambridge University Press:  15 March 2011

Yusuke Daiko
Affiliation:
Ceramic and Materials Engineering Rutgers, The State University of New Jersey, 607 Taylor Rd., Piscataway, NJ 08854-8065, USA Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku Nagoya, 466-8555, Japan
Lisa C. Klein
Affiliation:
Ceramic and Materials Engineering Rutgers, The State University of New Jersey, 607 Taylor Rd., Piscataway, NJ 08854-8065, USA
Masayuki Nogami
Affiliation:
Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku Nagoya, 466-8555, Japan
Get access

Abstract

Nafion, a perfluorosulfonate ionomer, was modified to increase its thermal stability and reduce its methanol permeability. Hybrid membranes of TiO2·SiO2/Nafion and TiO2·SiO2·P2O5/Nafion™ were prepared using an infiltration sol-gel method. Si(OC2H5)4 and Ti(OC4H9)4 were infiltrated into dry NafionTM membranes, followed by hydrolysis and condensation reactions in first HCl and then NH4OH solutions. The level of inorganic content was controlled by the infiltration time, incorporating up to 50 wt%. Solvent uptake, swelling, water content and proton conductivity were measured at room temperature. Hybrid membranes of TiO2·SiO2/Nafion with ∼30 wt% of infiltrated oxides showed a significantly lower methanol uptake of ∼20wt% and a swelling ratio of 1.15, as compared to those of unmodified NafionTM membrane, ∼60wt% for methanol uptake and 1.8 for swelling ratio. Proton conductivities for TiO2·SiO2/Nafion hybrid membranes decreased with increasing infiltrated oxides. However, infiltrated membranes treated in phosphoric acid solutions to increase the number of P-OH groups showed a six-fold increase in proton conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wasmus, S., Küver, A., J. Electroanal. Chem. 461,14 (1999)Google Scholar
2. Ren, X., Springer, T. E., and Gottesfeld, S., J. Electrochem. Soc. 147, 92 (2000)Google Scholar
3. Li, Q., He, R., Jensen, J. O., and Bjerrum, N. J., Chem. Mater. 15, 4896 (2003)Google Scholar
4. Anderson, M. L., Stroud, R. M., and Rolison, D. R., Nano lett. 2, 235 (2002)Google Scholar
5. Yamaguchi, T., Miyata, F., Nakao, S., Adv. Mater. 15, 1198 (2003)Google Scholar
6. Büchi, F.N., Gupta, B., Haas, O., Scherer, G.G., Electrochim. Acta 40, 345 (1995)Google Scholar
7. Jones, J. D., Roziére, J., J. Memb. Sci 185, 41 (2001)Google Scholar
8. Kerres, J. A., J. Memb. Sci 185, 3 (2001)Google Scholar
9. Elabd, Y. A., Napadensky, E., Sloan, J. M., Crawford, D. M., Walker, C. W., J. Memb. Sci 217, 227 (2003)Google Scholar
10. Nogami, M., Abe, Y., Phys. Rev. B 55, 12108 (1997)Google Scholar
11. Nogami, M., Nagao, R., Wong, C., Kasuga, T., J. Phys. Chem. 103, 9468 (1999)Google Scholar
12. Nogami, M., Matsushita, H., Goto, Y., Kasuga, T., Adv. Mater. 12, 1370 (2000)Google Scholar
13. Daiko, Y., Kasuga, T., Nogami, M., Chem. Mater. 11, 4624 (2002)Google Scholar
14. Daiko, Y., Akai, T., Kasuga, T., Nogami, M., J. Ceram. Soc. Jpn 109, 815 (2001)Google Scholar
15. Aparicio, M., Klein, L. C., Adjemian, K. T., Bocarsly, A. B., Ceramic Transactions, 127, 167, (2002)Google Scholar
16. Damay, F., Klein, L. C., Solid State Ionics, 162–163, 261 (2003)Google Scholar
17. Nogami, M., Suwa, M., Kasuga, T., Solid State Ionics, (2003) article in pressGoogle Scholar
18. Shao, P. L., Mauritz, K. A., Moore, R. B., J. Polym. Sci. B, Poly. Phys. 34, 873 (1996)Google Scholar
19. Adjemian, K.T., Srinivasan, S., Benziger, J., Bocarsly, A.B., J. Power Sources 109, 356 (2002)Google Scholar
20. Miyake, N., Wainright, J. S., Savinell, R. F., J. Electrochem. Soc. 148, A905 (2001)Google Scholar