Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T11:42:17.141Z Has data issue: false hasContentIssue false

Modified Edge Lift-Off Test: Experimental Modifications for Multifilm Systems

Published online by Cambridge University Press:  10 February 2011

J. C. Hay
Affiliation:
Fast Forward Devices, LLC, 11020 Solway School Road, Suite 113, Knoxville, TN 37931
E. G. Liniger
Affiliation:
I.B.M. Research, P.O. Box 218, Yorktown Heights, NY 10598-0218
X-H Liu
Affiliation:
I.B.M. Research, P.O. Box 218, Yorktown Heights, NY 10598-0218
Get access

Abstract

In developing an adhesion test for a microelectronics fabrication facility there are many criteria which must be met. Some of these include (i) sample prep must be simple, (ii) deformations should be elastic so the problem can be easily modeled, (iii) mechanics are ideally analytical, and (iv) the test end-point must be unambiguous and easy to obtain. A testing method in the literature which meets many of these criteria is the modified edge liftoff test (MELT). Delamination is induced through the release of strain energy stored in an elastic superlayer which results from a large mismatch in CTE between the film and substrate. In this work we consider details of the energy release rate calculation, effects of plate bending, and initial flaw size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hutchinson, J. W and Suo, Z., Adv. Appl. Mech., 29, 63 (1992).Google Scholar
2. Evans, A.G., Ruhle, M., Dalgleish, B.J., and Charalambides, P.G., Metall. Trans., 21A, 2419 (1990).Google Scholar
3. Ma, Q., Bumgarner, J., Fujimoto, H., Lane, M., and Dauskardt, R.H., Mat. Res. Soc. Symp. Proc., 473, 3 (1997).Google Scholar
4. Bagchi, A., Lucas, G.E., Suo, Z., and Evans, A.G., J. Mater. Res., 9, 1734 (1994).Google Scholar
5. Drory, M.D., Thouless, M.D., and Evans, A.G., Acta metall., 36, 2019 (1988).Google Scholar
6. He, M.Y., Xu, G., Clarke, D.R., Mat. Res. Soc. Svmp. Proc., 473, 1520 (1997).Google Scholar
7. Xu, G., Ragan, D.D., Clarke, D.R., He, M.Y., Ma, Q., Fujimoto, H., Mat. Res. Soc. Svmp. Proc., 458, 465470 (1997).Google Scholar
8. Shaffer, E.O., Mills, M.E., Hawn, D., Van Gestel, M., Knorr, A., Gundlach, H., Kumar, K., Kaloyeros, A.E., and Geer, R.E., Mat. Res. Soc. Symp. Proc., 511, 133 (1998).Google Scholar
9. Shaffer, E.O., Sikorski, S.A., McGarry, F.J., Mat. Res. Soc. SyMp. Proc., 338, 541 (1994).Google Scholar
10. McGarry, F. J., Shaffer, E.O., Mat. Res. Soc. Symp. Proc., 356, 515 (1995).Google Scholar
11. Shaffer, E.O., McGarry, F.J., Hoang, L., Polymer Eng. Sci., 36, 2375 (1996).Google Scholar
12. Shaffer, E.O., McGarry, F.J., Trusell, F., Mat. Res. Soc. Symp. Proc., 308 535 (1993).Google Scholar