Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T04:11:06.941Z Has data issue: false hasContentIssue false

Modification of the Optical and Electrical Properties CdS Films by Annealing in Neutral and Reducing Atmospheres

Published online by Cambridge University Press:  12 September 2013

J. Pantoja Enriquez
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México. Universidad Politécnica de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
G. Pérez Hernandez
Affiliation:
Universidad Juárez Autónoma de Tabasco. Villahermosa, Tabasco, México.
X. Mathew
Affiliation:
Centro de Investigación en Energía, UNAM, Temixco, Morelos, México.
G. Ibáñez Duharte
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
J. Moreira
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
J. A. Reyes Nava
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
J. J. Barrionuevo
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
L. A. Hernandez
Affiliation:
Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
R. Castillo
Affiliation:
Universidad Politécnica de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
P. J. Sebastian
Affiliation:
Centro de Investigación en Energía, UNAM, Temixco, Morelos, México.
Get access

Abstract

Cadmium sulfide (CdS) films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in argon (neutral atmosphere) or hydrogen (reducing atmosphere) for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bube, R.H., Photovoltaic Materials, (Imperial College Press, London, 1998).CrossRefGoogle Scholar
Bonnet, D., Int. J. Solar Energy 12, 1(1992).CrossRefGoogle Scholar
Chu, T.L., Chu, S.S., Solid-State Electron. 38, 533 (1994).CrossRefGoogle Scholar
Pantoja Enríquez, J. and Mathew, Xavier. Solar Energy Materials & Solar Cells 76, 313 (2003).CrossRefGoogle Scholar
Mane, R.S., Lokhande, C.D., Mater. Chem. Phys. 65, 1 (2000).CrossRefGoogle Scholar
Romeo, N., Bosio, A., Canevari, V., Podesta, A., Sol. Energy 77, 795 (2004).CrossRefGoogle Scholar
Wu, X., Solar Energy 77 (2004) 803.CrossRefGoogle Scholar
Lee, J., Appl. Surf. Sci. 252 (2005) 13981403.CrossRefGoogle Scholar
Zinoviev, K.V., Zelaya-Angel, O.. Materials Chemistry and Physics 70, 100 (2001).CrossRefGoogle Scholar
Vasco, E., Puron, E., de Melo, O., Materials Letters 25 ( 1995) 205207.CrossRefGoogle Scholar
Metin, H. and Esen, R., J. Cryst. Growth, 258, 141(2003).CrossRefGoogle Scholar
Han, J., Liao, C., Jiang, T., Fu, G., Krishnakumar, V., Spanheimer, C., Haindl, G., Zhao, K., Klein, A., Jaegermann, W.. Materials Research Bulletin 46 (2011) 194198.CrossRefGoogle Scholar
Hiie, J., Muska, K., Valdna, V., Mikli, Taklaja, Gavrilov. Thin Solid Films 516, 7008 (2008).CrossRefGoogle Scholar
Amorphous, Tauc J. and Liquid Semiconductors, New York Plenum (1974).Google Scholar
Mott, N.F, Davis, E.A. Electronic Processes in Non-Crystalline Materials Calendron Press Oxford 1979.Google Scholar
Pankove, J.J., Optical Processes in Semiconductors, Prentice-Hall, Englewood C., NJ, 1971.Google Scholar
Davis, P. W. and Shilliday, T.S., Phys. Rev. 118, 1020 (1960).CrossRefGoogle Scholar