Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T11:25:12.190Z Has data issue: false hasContentIssue false

Modification of Structure and Properties of Superconducting YBaCuO Crystals by Combined Irradiations

Published online by Cambridge University Press:  18 March 2011

Elvira M. Ibragimova
Affiliation:
Institute of Nuclear Physics, Ulugbek, 702132, Tashkent, UZBEKISTAN
Marquis A. Kirk
Affiliation:
Material Science Division, Argonne National Laboratory, Argonne, IL, USA
Get access

Abstract

Effects of electron irradiations in combination with 60Co gamma-quanta on magnetic properties of YBa2Cu3O7−x crystals have been studied to determine the contribution from oxygen defects to the pinning, and the condition of improving the critical parameter, Jc, of the crystals. Irradiation with 300 keV electrons followed by gamma-irradiation makes strong oxygen disorder, causing degradation of SC-transition and appearance of diamagnetic transition at 200 K, but no flux pinning in H>1 Tesla at 77 K. However, it is shown that oxygen defects do contribute substantially to the flux pinning at cation-anion defect clusters in CuO-planes created by moderate fluences of 1 MeV-electrons. A model is suggested for different oxygen and copper defects induced by the irradiations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, H.W., Progress in High Temperature Superconductivity 30, 3 (1992) review.Google Scholar
2. Vlcek, B.M., Viswanathan, H.K., Frischherz, M.C., Fleshler, S., Vandervoort, K., Downey, J., Welp, U., Kirk, M.A. and Crabtree, G.W., Phys. Rev.B 48, 4067 (1993).Google Scholar
3. Narayan, J., Shukla, V.N., Lukasiewicz, S.J., Bimno, N., Singh, R., Schreiner, A.F. and Pennycook, S.J., Appl. Phys. Lett. 51, 940 (1987).Google Scholar
4. Umezawa, A., Crabtree, G.W., Liu, J.Z., Weber, H.W., Kwok, W.K., Nunez, L.H., Moran, T.I., Sowers, C.H. and Claus, H., Phys. Rev.B 36, 7151 (1987).Google Scholar
5. Kirk, M.A. and Yan, Y., Micron 30, 507 (1999) review.Google Scholar
6. Giapintzakis, J.K., Lee, W.C., Rice, J.P., Ginsberg, D.K., Robertson, I.M., Wheeler, R., Kirk, M.A., and Ruault, M.-O., Phys. Rev.B 45, 10677 (1992).Google Scholar
7. Polyak, O.Yu., Tukhvatulin, R. Kh., Chan, Kim Gen, Gasanov, E.M. and Ibragimova, E.M., Phys. Stat. Sol. (A) 122, K45 (1990).Google Scholar
8. Rice, J.P., Pazol, B. G., Ginsberg, D. M., Moran, T. J., and Weissman, M. B., J. Low Temp. Physics, 72, 345 (1989).Google Scholar
9. Senoussi, S., J.de Physique III (France) 2, 1041 (1992).Google Scholar
10. Ibragimova, E.M., Nebesny, A.F., Gasanov, E.M. and Kirk, M.A., Uzbek Physical Journal No 6, 16 (1998).Google Scholar
11. Kirk, M.A., Ibragimova, E.M., Giapintzakis, J.K. and Ginsberg, D.K., Bull. Amer. Phys. Soc. Meet. 41 (1), R242 (1996).Google Scholar
12. Gasanov, E.M., Giapintzakis, J.K., Ibragimova, E.M., Kirk, M.A. and Nebesny, A.F., Uzbek Physical Journal No 5, 46 (1997).Google Scholar
13. Theuss, H. and Kronmuller, H., Physica C., 178, 37 (1991).Google Scholar
14. Rykov, A.I., Tajima, S., Kusmartsev, F.V., Forgan, E.M., Simon, Ch., Phys. Rev. B. 60, 7601 (1999).Google Scholar