Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T10:24:25.265Z Has data issue: false hasContentIssue false

Modeling Silicon Implantation Damage and Transient Enhanced Diffusion Effects for Silicon Technology Development

Published online by Cambridge University Press:  15 February 2011

Martin D. Giles
Affiliation:
Intel Corp., Technology CAD Dept., Santa Clara, CA 95052-8119, mgiles@td2cad.intel.com
Shaofeng Yu
Affiliation:
Intel Corp, Technology CAD Dept., Hillsboro, OR 97125-6497.
Harold W. Kennel
Affiliation:
Intel Corp, Technology CAD Dept., Hillsboro, OR 97125-6497.
Paul A. Packan
Affiliation:
Intel Corp, Technology CAD Dept., Hillsboro, OR 97125-6497.
Get access

Abstract

Despite more than 20 years of effort, detailed understanding of defect-coupled dopant diffusion in silicon still falls short of what is practically required to support state-of-the-art silicon technology development. The challenge for modeling in industry is to combine the best of our physical understanding with measurements of dopant profiles for technology-relevant conditions to provide models which are as predictive and efficient as possible. This paper presents experimental results which provide insight into damage generation and annealing processes and discusses practical modeling approaches to support technology development despite our incomplete understanding of the physical processes involved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rafferty, C.S., Vuong, H. -H., Eshraghi, S. A., Giles, M. D., Pinto, M. R., and Hillenius, S. J., IEDM Technical Digest, p. 311, 1993.Google Scholar
2. Eaglesham, D. J., Stolk, P. A., Gossmann, H. -J., and Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
3. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar
4. Poate, J. M., Eaglesham, D. J., Gilmer, G. H., Gossman, H. -J., Jaraiz, M., Rafferty, C. S., and Stolk, P. A., IEDM Technical Digest, p. 77, 1995.Google Scholar
5. Lim, D. R., Rafferty, C. S., and Klemens, F. P., Appl. Phys. Lett. 67, 2302 (1995).Google Scholar
6. Packan, P., Kennel, H., Thompson, S., Corcoran, S., and Taylor, M., Ion Implantation Technology Conference Proceedings, June 1996.Google Scholar
7. Rousseau, P. M., Griffin, P. B., and Plummer, J. D., Appl. Phys. Lett. 65, 578 (1994).Google Scholar
8. Sai-Halasz, G. A., Short, K. T., and Williams, J. S., IEEE Elee. Dev. Lett. 6, 285 (1985).Google Scholar
9. Michel, A. E., Rausch, W., Ronsheim, P. A., and Kastl, R. H., Appl. Phys. Lett. 50, 416 (1987).Google Scholar
10. Fair, R. B., J. Electrochem. Soc. 137, 667 (1990).Google Scholar
11. Law, M. E., Rafferty, C. S., and Dutton, R. W., Suprem4-IV User's Manual, Stanford University, December 1988.Google Scholar
12. Yergeau, D. W., Kan, E. C., Gander, M. J., and Dutton, R. W., SISPAD'95 conference proceedings, September 1995.Google Scholar
13. Lau, F., Mader, L., Mazure, C., Werner, Ch., and Orlowski, M., Appl. Phys. A 49, 671 (1989).Google Scholar