Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-03T12:00:54.109Z Has data issue: false hasContentIssue false

Modeling of Charge Transport in a Hybrid Metal / Organic / Inorganic Device

Published online by Cambridge University Press:  01 February 2011

Henry Alberto Mendez*
Affiliation:
hmendez@javeriana.edu.co, Pontificia Universidad Javeriana, Physics, Cra 7 No 43-82 Ed.52 Of.606, Bogota, N/A, Colombia, +57 1 3208320 Ext 4087, +57 1 3208320 Ext 4044
Get access

Abstract

A Metal / Organic / Inorganic semiconductor heterostructure was built and characterized in situ under ultra-high vacuum conditions (UHV). The aim was to investigate the influence of a perylene-derivative organic thin film on the transport electronic properties of Schottky Ag / GaAs diodes. The device was studied using a combination of photoemission spectroscopy (PES) and electrical measurements. The obtained results were discussed using the analytical expressions of a trapped charge limited current (TCLC) model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, D.G., Ghabboun, J., Martin, J.M.L. and Cahen, D.. J. Phys. Chem. B. 105 12011 (2001).10.1021/jp012708lGoogle Scholar
2. Sheats, J.R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D. and Stocking, A.. Science 273 884 (1996).10.1126/science.273.5277.884Google Scholar
3. J, Campbell Scott.., J. Vac. Sci. Technol. A. 21(3) 521 (2003).Google Scholar
4. Lindner, T.. Diploma thesis. Technische Universität Chemnitz (2000).Google Scholar
5. Méndez, H.. Ph.D thesis. Technische Universität Chemnitz (2000). Available at http://archiv.tu-chemnitz.de/pub/2006/index.html. Number 124.Google Scholar
6. Hill, I. G., Milliron, D., Schwartz, J. and Kahn, A.. Appl. Surf. Sci. 166 354362 (2000).10.1016/S0169-4332(00)00449-9Google Scholar
7. Stöhr, J.. NEXAFS spectroscopy. Springer, Berlin. p.228 (1996).Google Scholar
8. Hill, I. G., Kahn, A., Soos, Z.G., Pascal, R.A. Jr, Chem. Phys. Lett. 327 181 (2000).10.1016/S0009-2614(00)00882-4Google Scholar
9. J, Campbell Scott.., J. Vac. Sci. Technol. A. 21(3) 521 (2003).Google Scholar
10. Mönch, , Semiconductor surfaces and interfaces, 2nd edition, Springer, Berlin. p.80 (1995).10.1007/978-3-662-03134-6Google Scholar
11. Kampen, U., Gavrila, G., Méndez, H., Zahn, D. R. T., Vearey-Roberts, A. R., Evans, D. A., Wells, J., McGovern, I., and Braun, W., J. Phys.: Condens. Matter 15, S2679 (2003).Google Scholar
12. Thurzo, I., Méndez, H., Zahn, D. R. T.. Phys. Stat. Sol. (a) 202 (10) 1994 (2005).Google Scholar
13. Brütting, W., Berleb, S. and Mückl, A. G.. Organic electronics 2 1 (2001).Google Scholar
14. Cimino, R., Giarante, A., Horn, K. and Pedio, M.. Surf. Sci. 331–333(1995) 534539.10.1016/0039-6028(95)00300-2Google Scholar
15. Szuber, J., Hollinger, G. and Bergignat, E.. Electron technology, 31, 3 / 4 (1998) 328337.Google Scholar