No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
Zinc sulfide doped with manganese is extensively used for thin film electroluminescent device applications. In order to assess the key material and process challenges, ZnS:Mn layers were fabricated by metalorganic chemical vapor deposition in the 250°-500°C range on an AlTiO/InSnO/glass stack. The microstructure of the ZnS:Mn films was examined by Transmission Electron Microscopy (TEM) as part of a larger study which fully characterizes these films by a variety of structural and chemical characterization techniques, including Rutherford Backscattering, Secondary Ion Mass Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and X-ray Diffraction. For all the growth conditions, the films were found to be polycrystalline having predominantly 2H hexagonal ZnS structure. The ZnS grains are found to grow columnar as the film thickness increases, also widening in the direction parallel to the substrate surface and reaching the 100 - 200 nm average lateral size at the 650 nm film thickness. The presence of the 8H ZnS polytype was detected in the low-temperature ZnS:Mn films by TEM selected area electron diffraction and confirmed by X-ray diffraction analysis. Dark field TEM imaging correlated this 8H ring with very small (∼2.5 nm) grains present throughout the low temperature film with a slightly higher density at the film/substrate interface. The 700°C post-deposition annealing was found to initiate a solid state transformation to the cubic (3C) ZnS crystal structure, and resulted in an average grain size of ∼250 nm at the surface of the annealed film.