Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T07:43:51.459Z Has data issue: false hasContentIssue false

Minimum Grain Size in Nanocrystalline Metal Powders

Published online by Cambridge University Press:  15 February 2011

J. Eckert
Affiliation:
California Institute of Technology, W.M. Keck Laboratory of Engineering Materials 138-78, Pasadena, CA 91125
Y. R. Abe
Affiliation:
California Institute of Technology, W.M. Keck Laboratory of Engineering Materials 138-78, Pasadena, CA 91125
Z. Fu
Affiliation:
California Institute of Technology, W.M. Keck Laboratory of Engineering Materials 138-78, Pasadena, CA 91125
W. L. Johnson
Affiliation:
California Institute of Technology, W.M. Keck Laboratory of Engineering Materials 138-78, Pasadena, CA 91125
Get access

Abstract

Nanocrystalline metal powders can be synthesized by mechanical attrition in a highenergy ball mill. A general relation determining the grain size of these materials is inferred. The ultimate grain size of nanocrystalline metals (typically 6 − 22 nm) is governed by the competition between the severe plastic deformation introduced during ball milling and the recovery behavior of the material. The lower bound grain size achievable by mechanical attrition is given by the minimum distance between two dislocations in a pile-up within a grain for all pure metals. Foar binary alloys the ultimate grain size depends on the composition of the material. Varying the composition changes the grain size reversibly. This can be explained by introducing solid solution hardening effects in the general relation for the lower bound grain size in pure metals. Thus, the proposed model for the ultimate grain size achievable by ball milling seems to be. applicable to all metals and alloys subjected to heavy mechanical deformation. However, reversible grain size changes are not restricted to mechanical attrition, but have also been observed for nanocrystalline Pd-H solid solutions produced by hydriding at constant pressure. Solid solutions prepared at different compositions, i.e. samples with different compositions, exhibit different grain sizes. Cycling between different temperatures/compositions changes the grain size reversibly. This cannot be explained by a model based on plastic deformation as in the case of ball-milled metal powders. The results are compared with data for ball-milled powders and samples prepared by inert gas condensation. The grain size changes are discussed with respect to the compositional changes and the grain boundary energy of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2. Karch, J., Birringer, R., and Gleiter, H., Nature 33, 556 (1987).CrossRefGoogle Scholar
3. Mütschele, T. and Kirchheim, R., Scr. Metall. 21, 135 (1987).CrossRefGoogle Scholar
4. Herr, U., Jing, J., Gonser, U., and Gleiter, H., Solid-State Commun. 76, 197 (1990).CrossRefGoogle Scholar
5. Birringer, R., Gleiter, H., Klein, H.P., and Marquardt, P., Phys. Lett. A 102, 356 (1984).CrossRefGoogle Scholar
6. Savage, S. J. and Froes, F. H., J. Metals 36, 20 (1984).Google Scholar
7. McMahon, G. and Erb, U., Microstructural Science 17, 447 (1989).Google Scholar
8. EI-Sherik, A. M., Boylan, K., Erb, U., Palumbo, G., and Aust, K.T., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Briant, C. L., and Dahmen, U. (Mater. Res. Soc. Proc. M, Pittsburgh, PA, 1992) (in press).Google Scholar
9. Lu, K., Wei, W. D., and Wang, J. T., Scr. Metall. Mater. 24, 2319 (1990).CrossRefGoogle Scholar
10. Ganapathi, S. K., Aindow, M., Fraser, H. L., and Rigney, D. A., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Bemholc, J., and Nelson, D. L. (Mater. Res. Soc. Proc. 206, Pittsburgh, PA, 1991), pp. 593.Google Scholar
11. Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. rd, 305 (1989).Google Scholar
12. Fecht, H. J., Hellstem, E., Fu, Z., and Johnson, W. L., Adv. Powder Metall. 1, 11 (1989).Google Scholar
13. Jang, J. S. C. and Koch, C. C., Scr. Metall. Mater. 24, 1599 (1990).CrossRefGoogle Scholar
14. Eckert, J., Holzer, J. C., Krill, C. E. III, and Johnson, W. L., Mater. Sci. Forum 8890, 505 (1992).CrossRefGoogle Scholar
15. Eckert, J., Holzer, J. C., Krill, C. E. II, and Johnson, W. L., J. Mater. Res. (in press).Google Scholar
16. Benjamin, J. S., Sci. Am. 234, 40 (1976).CrossRefGoogle Scholar
17. Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
18. Eckert, J., Schultz, L., and Urban, K., Appl. Phys. Lett. 55, 117 (1988).CrossRefGoogle Scholar
19. Yeh, X. L., Samwer, K., and Johnson, W. L., Appl. Phys. Lett. 42, 242 (1983).CrossRefGoogle Scholar
20. Fecht, H. J., Fu, Z., and Johnson, W. L., Phys. Rev. Lett. 64, 1753 (1990).CrossRefGoogle Scholar
21. Klug, H. P. and Alexander, L., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974), pp. 661.Google Scholar
22. Bever, M. B., Holt, D. L., and Titchener, A. L., Prog. Mater. Sci. 17, 1 (1973).CrossRefGoogle Scholar
23. Schaefer, H. E., WUrschum, R., Birringer, R., and Gleiter, H., J. Less-Common Met. 140. 161 (1988).CrossRefGoogle Scholar
24. Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H. R., and Armstrong, R. W., Scr. Metall. 20, 93 (1986).CrossRefGoogle Scholar
25. Smithells, C. J., Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworths, London, 1983), pp. 15–1.Google Scholar
26. Nieh, T. G. and Wadsworth, J., Scr. Metall. Mater. 25, 955 (1991).CrossRefGoogle Scholar
27. Schultz, L., Mater. Sci. Eng. 92, 15 (1988).CrossRefGoogle Scholar
28. Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
29. Uenishi, K., Kobayashi, K. F., Nasu, S., and Shingu, P. H., Metallkde, Z.. (in press).Google Scholar
30. Abe, Y. R., Holzer, J. C., and Johnson, W. L., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Briant, C. L., and Dahmen, U. (Mater. Res. Soc. Proc. 238, Pittsburgh, PA, 1992) (in press).Google Scholar
31. Shingu, P. H., Ishihara, K. N., Uenishi, K., Kuyama, J., and Nasu, S., in Solid State Powder Processing, edited by Clauer, A. H. and Barbadillo, J. J. de (The Minerals, Metals and Materials Society, 1990), pp. 21.Google Scholar
32. Fukunaga, T., Mori, M., Inou, K., and Mizutani, U., Mater. Sci. Eng. A 134, 863 (1991).CrossRefGoogle Scholar
33. Eckert, J., Birringer, R., Holzer, J. C., Krill, C. E. III, and Johnson, W. L., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Briant, C. L., and Dahmen, U. (Mater. Res. Soc. Proc. 238, Pittsburgh, PA, 1992) (in press).Google Scholar
34. Eckert, J., Holzer, J. C., Krill, C. E. III, and Johnson, W. L. (submitted to J. Appl. Phys.).Google Scholar
35. Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), pp. 363.Google Scholar
36. Yavari, A. R. and Desré, P. J. (submitted to Phys. Rev. Lett.).Google Scholar
37. Abe, Y.R. (private communication).Google Scholar
38. Flanagan, T.B. and Oates, W.A., Ann. Rev. Mater. Sci. 21, 269 (1991).CrossRefGoogle Scholar
39. Hondros, E.D. and Seah, M.P., in Physical Metallurgy, 3rd ed., edited by Cahn, R.W. and Haasen, P. (Elsevier Science Publishers B.V., Amsterdam, 1983), pp. 856.Google Scholar
40. Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, London, 1981), pp. 44.Google Scholar