Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T18:18:58.806Z Has data issue: false hasContentIssue false

Mimicking Photosynthetic Electron Transfer

Published online by Cambridge University Press:  15 February 2011

Devens Gust
Affiliation:
Department of Chemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona, 85287, USA.
Thomas A. Moore
Affiliation:
Department of Chemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona, 85287, USA.
Ana L. Moore
Affiliation:
Department of Chemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona, 85287, USA.
Get access

Abstract

The photosynthetic reaction centers of plants and bacteria are photovoltaic devices on the molecular scale which convert light energy into chemical potential energy in the form of long-lived, energetic charge separated states. It is now possible to prepare synthetic multicomponent molecules which mimic important aspects of this process. For example, one of the keys to reaction center function is a multistep electron transfer strategy. In this paper, two general types of multistep electron transfer, sequential and parallel, are described and illustrated with several synthetic triad and pentad molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gust, D., Mathis, P., Moore, A. L., Liddell, P. A., Nemeth, G. A., Lehman, W. R., Moore, T. A., Bensasson, R. V., Land, E. J., and Chachaty, C., Photochem. Photobiol. 37S, S46 (1983).Google Scholar
2. Moore, T. A., Gust, D., Mathis, P., Mialocq, J. C., Chachaty, C., Bensasson, R. V., Land, E. J., Doizi, D., Liddell, P. A., Lehman, W. R., Nemeth, G. A., and Moore, A. L., Nature (London) 307, 630 (1984).Google Scholar
3. Connolly, J. S. and Bolton, J. R., in Photoinduced Electron Transfer, Part A., edited by Fox, M. A. and Channon, M. (Elsevier, Amsterdam, 1988) chap. 6.2.Google Scholar
4. Gust, D. and Moore, T. A., Science 244, 35 (1989).Google Scholar
5. Gust, D. and Moore, T. A., in Advances in Photochemistry, Vol 16, edited by Volman, D. H., Hammond, G. S., and Neckers, D. C. (John Wiley & Sons, New York, 1991).Google Scholar
6. Gust, D. and Moore, T. A., Topics in Current Chemistry 199 (1991).Google Scholar
7. Gust, D., Moore, T. A., Moore, A. L., Lee, S.-J., Bittersmann, E., Luttrull, D. K., Rehms, A. A., DeGraziano, J. M., Ma, X. C., Gao, F., Belford, R. E., and Trier, T. T., Science 248, 199 (1990).Google Scholar
8. Gust, D., Moore, T. A., Makings, L. R., Liddell, P. A., Nemeth, G. A., and Moore, A. L., J. Am. Chem. Soc. 108, 8028 (1986).Google Scholar
9. Arata, H. and Parson, W. W., Biochim. Biophys. Acta 638, 201 (1981).Google Scholar