Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T18:52:39.898Z Has data issue: false hasContentIssue false

Milling and Additive Effects on Hydrogen Desorption Reactions of Li-N-H and Li-Mg-N-H Hydrogen Storage Systems

Published online by Cambridge University Press:  26 February 2011

Mitsuru Matsumoto
Affiliation:
e1345@mosk.tytlabs.co.jp, Toyota Central R&D Labs. Inc.,, Materials, Nagakute, Aichi, N/A, Japan, +81-561-63-5325, +81-561-63-6137
Yoshitsugu Kojima
Affiliation:
kojimay@hiroshima-u.ac.jp, Toyota Central R&D Labs. Inc.,, Nagakute, Aichi, 480-1192, Japan
Shin-ichi Towata
Affiliation:
e0472@mosk.tytlabs.co.jp, Toyota Central R&D Labs. Inc.,, Nagakute, Aichi, 480-1192, Japan
Yuko Nakamori
Affiliation:
yuko@imr.tohoku.ac.jp, Tohoku University, Institute for Materials Research, Sendai, 980-8577, Japan
Shin-ichi Orimo
Affiliation:
orimo@imr.tohoku.ac.jp, Tohoku University, Institute for Materials Research, Sendai, 980-8577, Japan
Get access

Abstract

Hydrogen desorption reactions of the mixtures of (i) lithium amide and lithium hydride (LiNH2/LiH), and (ii) magnesium amide and lithium hydride (Mg(NH2)2/4LiH) were studied. Titanium compounds and nano-particles including fullerene (C60), were doped to those hydrogen storage mixtures respectively. The hydrogen desorption reactions were monitored by means of temperature programmed desorption (TPD) technique under an Ar atmosphere. The reaction of LiNH2/LiH was accelerated by adding either 1 mol% of Ti species or 0.2 mol% of fullerene (C60), while those additives did not show significant acceleration effects on the reaction of Mg(NH2)2/4LiH. Kinetic studies revealed the enhanced hydrogen desorption reaction rate constant for TiCl3 doped LiNH2/LiH, k = 3.1 × 10−4 s−1 at 493 K, and the prolonged ball-milling further improved reaction rate, k = 1.1 × 10−3 s−1 at the same temperature. For the dehydrogenation reaction of TiCl3 doped LiNH2/LiH, the activation energies estimated by Kissinger plot (95 kJ mol−1) and Arrhenius plot (110 kJ mol−1) were in reasonable agreement each other. The LiNH2/LiH mixture without additive exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of LiNH2/LiH.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schlapbach, L., Züttel, A., Nature (London) 414 (2001) 353.Google Scholar
2. Nakamori, Y., Orimo, S., J. Alloys Compd. 370 (2004) 271.Google Scholar
3. Noritake, T., Aoki, M., Towata, S., Ninomiya, A., Nakamori, Y., Orimo, S., Appl. Phys. A 83 (2006) 277.Google Scholar
4. Nakamori, Y., Ninomiya, A., Kitahara, G., Aoki, M., Noritake, T., Miwa, K., Kojima, Y., Orimo, S., J. Power Sources 155 (2006) 447.Google Scholar
5. Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K. L.. Nature (London) 420 (2002) 302.Google Scholar
6. Nakamori, Y., Orimo, S., Mat. Sci. Eng. B 108 (2004) 48.Google Scholar
7. Noritake, T., Nozaki, H., Aoki, M., Towata, S., Kitahara, G., Nakamori, Y., Orimo, S., J. Alloys Compd. 393 (2005) 264.Google Scholar
8. Miwa, K., Ohba, N., Towata, S., Nakamori, Y., Orimo, S., Phys. Rev. B 71 (2005) 195109.Google Scholar
9. Kojima, Y., Kawai, Y., J. Alloys Compd. 395 (2005) 236.Google Scholar
10. Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Noritake, T., Towata, S., Orimo, S., J. Alloys Compd. 404–406 (2005) 396.Google Scholar
11. Ichikawa, T., Hanada, N., Isobe, S., Leng, H.Y., Fujii, H., J. Alloys Compd. 404–406 (2005) 435.Google Scholar
12. Isobe, S., Ichikawa, T., Hanada, N., Leng, H. Y., Fichtner, M., Fuhr, O., Fujii, H., J. Alloys Compd. 404–406 (2005) 439.Google Scholar
13. Aoki, M., Noritake, T., Kitahara, G., Nakamori, Y., Towata, S., Orimo, S., J. Alloys Compd. in press.Google Scholar
14. Nakamori, Y., Kitahara, G., Ninomiya, A., Aoki, M., Noritake, T., Towata, S., Orimo, S., Mat. Trans. 46 (2005) 2093.Google Scholar
15. Leng, H., Ichikawa, T., Fujii, H., J. Phys. Chem. B 110 (2006) 12964.Google Scholar
16. Matsumoto, M., Haga, T., Kawai, Y., Kojima, Y., J. Alloys Compd. In press.Google Scholar
17. Xiong, Z., Hu, J., Wu, G., Chen, P., Luo, W., Gross, K., Wang, J., J. Alloys Compd. 398 (2005) 235.Google Scholar
18. Kissinger, H. E., Anal. Chem. 29 (1957) 1702.Google Scholar
19. Ichikawa, T., Isobe, S., Hanada, N., Fujii, H., J. Alloys Compd. 365 (2004) 271.Google Scholar
20. Li, Q., Chou, K.-C., Lin, Q., Jiang, L.-J., Zhan, F., Int. J. Hydrogen Energy 29 (2004) 843.Google Scholar
21. Pinkerton, F. E., J. Alloys Compd. 400 (2005) 76.Google Scholar