Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T04:28:37.976Z Has data issue: false hasContentIssue false

Microwave Materials with High Q and Low Dielectric Constant for Wireless Communications.

Published online by Cambridge University Press:  01 February 2011

Hitoshi Ohsato*
Affiliation:
Materials Science and Engineering, Shikumi-College, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan
Get access

Abstract

Microwave dielectrics with high Q and low εr are expected for millimeterwave applications. In this paper the preparation and properties of some candidates for microwave dielectrics such as forsterite, willemite, alumina, corundum-type compounds, green phase of Y2BaCuO5 are presented. High purity forsterite has low εr of 7.0 high Q·f of 270000 GHz and τf of -65ppm/°C. Willemite also has low εr of 6.5, and high Q·f of 160000 GHz. Alumina has ultra high Q·f of 680000GHz with εr of 10.05, and τf of -60 ppm/°C. Mg4(Nb2-x Tax)O9 which belongs to corundum group has εr of 11.5, Q·f of 350000 GHz, and τf of -70ppm/°C. Y2Ba(Cu1/4Zn3/4)O5 which belongs to green phase group has εr of 15.4, Q·f of 220000 GHz. The τf’s of these materials, which are an important property for millimeterwave applications, have been adjusted to zero ppm/°C by the addition of rutile, or adjustment of solid solution composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohsato, H., Bulletin of the Ceramics Society of Japan, 39(8), 578 (2004) (In Japanese.)Google Scholar
2. Mueller, W., “A Brief Overview of FBAR Technology” Agilent Technologies, http://www.agilent.com/about/newsroom/features/2002jul29_fbar.pdf Google Scholar
3. Buchanan, R. C., Ceramic Materials for Electronics, Marcel Dekker, Inc., New York and Basel, pp. 18 (1986).Google Scholar
4. Andou, M., Tsunooka, T., Higashida, Y., Sugiura, H., and Ohsato, H., Abstracts for Microwave Materials and Their Applications, pp141, 1–3 Sept. 2002 York, UK.Google Scholar
5. Guo, Y., Ohsato, H., and Kakimoto, K., J. Eur. Ceram. Soc., 2005 (Accepted).Google Scholar
6. Alford, N. M. and Penn, S. J., J. Appl. Phys., 80 (10) 5895 (1996).Google Scholar
7. Penn, S. J., Alford, N. M., Templeton, A., Wang, X., Xu, M., Reece, M. and Schrapel, K., J. Am. Ceram. Soc., 80 (7) 1885(1997).Google Scholar
8. Ogawa, H., Kan, A., Ishihara, S. and Higashida, Y., J the Euro. Ceram. Soc., 23 (14 ), 2485(2003).Google Scholar
9. Ogawa, H., Kan, A., Ishihara, S. and Higashida, Y., J. Euro. Ceram. Soc., 21, 1731 (2003).Google Scholar
10. Hakki, B. W. and Coleman, P. D., IRE Trans.Microwave Theory & Tech., MTT–8, 402 (1960).Google Scholar
11. Kobayasi, Y., and Kato, M., IEEE Trans. Microwave Theory & Tech., MTT–33, 586(1985).Google Scholar
12. Ohsato, H., Tsunooka, T., Andou, M., Ohishi, Y., Miyauchi, Y., and Kakimoto, K., J. Korean Ceram. Soc., 40, 350 (2003).Google Scholar
13. Ohsato, H., Kato, H., Mizuta, M., Nishigaki, S. and Okuda, T., Jpn. J. Appl. Phys., 34 5413 (1995).Google Scholar
14. Tsunooka, T., Andou, M., Higashida, Y., Sugiura, H., and Ohsato, H., J. Eur. Ceram. Soc., 23(14), 2573(2003)Google Scholar
15. Ohishi, Y., Miyauchi, Y., Ohsato, H. and Kakimoto, K., Jpn. J. Appl. Phys., 43, 6A, 749(2004).Google Scholar
16. Kan, A. Dr, Thesis, Meijyo-University, 2004 Google Scholar