Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T23:59:15.463Z Has data issue: false hasContentIssue false

Microstructure of Irradiated Silicon

Published online by Cambridge University Press:  16 February 2011

J. S. Williams
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra 0200, Australia
J. Wong-Leung
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra 0200, Australia
R. D. Goldberg
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra 0200, Australia
M. Petravic
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra 0200, Australia
Get access

Abstract

This paper provides a brief overview of some issues relating to the microstructure of irradiated silicon which are of importance to the semiconductor industry. The nature of ion-induced disorder and conditions for amorphization are initially treated since the starting microstructure can strongly influence subsequent annealing behaviour, particularly removal of residual defects, dopant diffusion and electrical activation. The use of implantation-induced disorder as a means of removing metallic impurities, so called gettering, is also an issue of major current interest for improved performance of devices. Some new gettering results are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seidel, T. E., Proc. Mat. Res. Soc. 71, (1986) 3.Google Scholar
2. Williams, J. S., Mat. Res. Soc. Bull XVII 6 (1992) 47.Google Scholar
3. Wong, H., Cheung, N. W. and Chu, P. K., Appl. Phys. Lett. 52 (1988) 889.Google Scholar
4. Myers, S. M., Bishop, D. M., Follstaedt, D. M., Stein, H. J. and Wampler, W. R., Mat. Res. Soc. Symp. Proc. 283 (1993) 549.Google Scholar
5. Wong-Leung, J., Ascheron, C. E., Petravic, M., Elliman, R. G. and Williams, J. S., Appl. Phys. Lett. (in press).Google Scholar
6. Stolk, P. A., Gossmann, H. J., Eaglesham, D. J., Jacobson, D. C., Gilmer, G. H., Benton, J. L., Rafferty, C. S., Poate, J. M. and Luftman, J. S., Symp. A. (this conference).Google Scholar
7. Jones, K. S., Prussin, S. and Weber, E. R. Appl. Phys. A45 (1988) 1.Google Scholar
8. Schultz, P. J., Jagadish, C., Ridgway, M. C., Elliman, R. G. and Williams, J. S. Phys. Rev. B44 (1991) 9118.Google Scholar
9. Goldberg, R. D., Elliman, R. G. and Williams, J. S., Nuc. Instrum. Meth. B80/81 (1993) 596.Google Scholar
10. Linnros, J., Elliman, R. G. and Brown, W. L., J Mater. Res. 6 (1988) 1208.Google Scholar
11. Goldberg, R. D., PhD Thesis, Melbourne University (1995)Google Scholar
12. Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M. and Knoell, R. B., Nucl. Instrum. Meth. B19/20 (1987) 435.Google Scholar
13. Goldberg, R. D., Elliman, R. G. and Williams, J. S., unpublishedGoogle Scholar
14 Williams, J. S., Goldberg, R. D., Petravic, M. and Rao, Z., Nucl. Instrum. Meth. B84 (1994) 199.Google Scholar
15. Williams, J. S.. Brown, W. L., Elliman, R. G., Knoell, R. V., Maher, D. M. and Seidel, T. E., Mat. Res. Soc. Symp. Proc. 45 (1985) 79.Google Scholar
16. Williams, J. S, Elliman, R. G., Brown, W. L. and Seidel, T. E.. Phys. Rev. Lett. 55 (1985) 1482.Google Scholar
17. Olson, G. L. and Roth, J. A., Mat. Sci. Rep. 3 (1988) 1.Google Scholar
18. Liefting, J. R., Custer, J. S. and Saris, F. W., Mater, Sci Eng. B25 (1994) 60.Google Scholar
19. Eaglesham, D. J., Stolk, P. A., Gossmann, H. J. and Poate, J. M., these proceedings.Google Scholar
20.A. Cacciato and Saris, F. W., Proc. Int. Conf. on Ion Implantation Techniques, Catania, Italy (1994).Google Scholar
21.E-MRS Symp. on “Material Aspects of Ion Beam Synthesis”, publ. in Nucl. Instrum. Meth. B84 (1994).Google Scholar
22. Williams, J. S., Rep. Prog. Phys. 49 (1986) 491.Google Scholar
23. Wong-Leung, J., Williams, J. S., Elliman, R. G., Nygren, E., Eaglesham, D. J., Jacobson, D. C. and Poate, J. M. Nucl. Instrum. Meth. (in press) (1995).Google Scholar
24. Mohadjeri, B., Williams, J. S. and Wong-Leung, J., Appl. Phys. Lett. submitted.Google Scholar
25. Wong-Leung, J., Nygren, E., Williams, J. S. and Eaglesham, D. J., Symp. A. (this conference).Google Scholar
26. Weber, E. R. Appl. Phys. A30 (1983) 1.Google Scholar
27. Wong-Leung, J., Eaglesham, D. J. and Williams, J. S., to be publishedGoogle Scholar