Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T23:43:59.013Z Has data issue: false hasContentIssue false

Microstructure Characterization of Amorphous Silicon Based Alloys by Inert Gas Effusion Studies

Published online by Cambridge University Press:  17 March 2011

Wolfhard Beyer
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Sergio S. Camargo Jr
Affiliation:
Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21945-970, Brazil
Rosari Saleh
Affiliation:
Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia, Depok 16424, Indonesia
Get access

Abstract

It is shown that inert gas effusion employing implanted neon and argon atoms is a useful tool for microstructure characterization of a-Si based alloys. The method measures sensitively interconnected voids and gives information about sizes of microstructure. Limitations of the method are discussed. The results show network reconstruction effects in a-Si:O:H and a-Si:C:H alloys as a function of annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beyer, W., J. Non-Cryst. Solids 97–98, 1027 (1987)Google Scholar
2. Williamson, D.L., in: Properties of Amorphous Silicon and its Alloys, Searle, T., ed., (Inspec, London, 1998) 47 Google Scholar
3. Mahan, A.H., in: Properties of Amorphous Silicon and its Alloys, Searle, T., ed., (Inspec, London, 1998) 39 Google Scholar
4. Beyer, W., in: Tetrahedrally-Bonded Amorphous Semiconductors, Adler, D. and Fritzsche, H., eds. (Plenum, New York, 1985) 129 Google Scholar
5. Norton, F.J., J. Am. Ceramic. Soc. 36, 90 (1953)Google Scholar
6. Jech, C. and Kelly, R., J. Phys. Chem. Solids 30, 465 (1969)Google Scholar
7. Neto, A.L. Baia, Santos, R.A., Freire, F.L. Jr, Camargo, S.S. Jr, Carius, R., Finger, F. and Beyer, W., Thin Solid Films 293, 206 (1997)Google Scholar
8. Beyer, W., J. Non-Cryst. Solids (2000) in printGoogle Scholar
9. Saleh, R., Munisa, L. and Beyer, W., Proc. 8th Asia Pasific Phys. Conf. (World Scientific, Singapore, 2000) submittedGoogle Scholar
10. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985); TRIM 95.4 (IBM Research, Yorktown, NY, 1995)Google Scholar
11. Beyer, W., Herion, J., Wagner, H. and Zastrow, U., Philos. Mag. B63, 269 (1991)Google Scholar
12. Anderson, O.L. and Stuart, D.A., J. Am. Ceramic Soc. 37, 573 (1954)Google Scholar
13. Beyer, W. and Wagner, H., J. Appl. Phys. 53, 8745 (1982)Google Scholar
14. , Landolt-Börnstein, Atom- und Molekularphysik, I (Springer-Verlag, Berlin, 1950) 325 Google Scholar
15. Beyer, W. and Wagner, H., J. Non-Cryst. Solids 59–60, 161 (1983)Google Scholar
16. Demond, F.J., Müller, G., Damantschitsch, H., Mannsperger, H., Kalbitzer, S., LeComber, P.G. and Spear, W.E., J. Phys. (Paris) 42 (C4), 779 (1981)Google Scholar