Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T00:05:16.168Z Has data issue: false hasContentIssue false

Microstructure and Stability Comparison of Nanometer Period W/C, Wc/C, and Ru/C Multilayer Structures

Published online by Cambridge University Press:  21 February 2011

Tai D. Nguyen
Affiliation:
Center for X-Ray Optics, Accelerator and Fusion Research Division. National Center for Electron Microscopy, Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA. 94720.
Ronald Gronsky
Affiliation:
National Center for Electron Microscopy, Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA. 94720.
Jeffrey B. Kortright
Affiliation:
Center for X-Ray Optics, Accelerator and Fusion Research Division.
Get access

Abstract

Multilayer structures of W/C, WC/C, and Ru/C, of various periods were prepared and studied by high-resolution transmission electron microscopy. Comparison of the phases in the layered structures is made for as-prepared and annealed samples. Both as-prepared and annealed WC/C multilayers are predominantly amorphous, while the phases in the W/C depend on the periods. The 2 nm period W/C multilayer remains amorphous after annealing, and the longer periods recrystallize to form W2C. The layered microstructures of W/C and WC/C are stable on annealing at all periods, while the amorphous Ru-rich layers in the 2 nm period Ru/C multilayer agglomerate upon annealing to form elemental hexagonal Ru crystallites. Larger period Ru/C multilayers show stable layered structures, and indicate hexagonal Ru in the Ru-rich layers. X-ray measurements show that the multilayer periods expand on annealing for all metal-carbon multilayers studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1. Barbee, T.W. Jr., in Low Energy X-ray Diagnostics--1981, edited by Attwood, D.T. and Henke, B. L. (AIP Conf. Proc. 75, AIP New York, 1981), p. 131.Google Scholar
2. Spiller, E., in Low Energy X-ray Diagnostics--1981, p. 124.Google Scholar
3. Kortright, I. B. and Denlinger, J. D., in Multilavers-Synthesis Properties and Non-Electronic Apolications, edited by Barbee, T.W. Jr., Spaepen, F., and Greer, L. (Mater. Res. Soc. Proc. 103, Pittsburgh, PA 1988) p. 95.Google Scholar
4. Takagi, Y., Flessa, S. A., Hart, K. L., Pawlik, D. A., Kadin, A. M., Wood, J. L., Keem, J. E., and Tyler, J. E., in Annlications of Thin-Film Multilayers Structures to Figumd X-ray Optics, edited by Marshall, G. F. (Proc. SPIE 563, Bellingham. WA 1985), p. 66.Google Scholar
5. Lamble, G. M., Heald, S. M., Sayers, D. E., Ziegler, E., and Viccaro, P. J., J. Appl. Phys. 65, 4250 (1989).Google Scholar
6. Ziegler, E., Lepetre, Y., Schuller, I.K., and Spiller, E., Apl. Phys, Let. 41, 1354 (1986).Google Scholar
7. Lepetre, Y., Ziegler, E., Schuller, I.K., and Rivoira, R., J. Appl. Phys. 64. 2301 (1986).Google Scholar
8. Petford-Long, A. K., Steams, M. B., Chang, C.-H., Nutt, S.R., Stearns, D.G., Ceglio, N.M., and Hawryluk, A.M., J. Appl. Phys. 61 1422 (1987).Google Scholar
9. Nutt, S. R. and Keem, J. E., in Multilavers- Synthesis. Prperties and Non-Electronic Applications p. 87.Google Scholar
10. Holloway, K., Do, K.B., and Sinclair, R., in Multilayers: Synthesis- Pronerties and Non-Electronic Applications. p. 167.Google Scholar
11. Nguyen, T.D., Gronsky, R., and Kortright, J.B., in High-Resolution Micrsopy of Materials, edited by Krakow, W., Ponce, F.A., and Smith, D. J. (Mater. Res. Soc. Proc. 139, Pittburgh, PA 1989) p. 357.Google Scholar
12. Nguyen, T. D., Gronsky, R., and Kortright, J. B., in Elec. Micros. Soc. Amer. Proc., edited by Bailey, G. W. (San Francisco, CA 1989) p. 680.Google Scholar
13. Nguyen, T. D., Gronsky, R., and Kortright, J. B. (submitted to J. Elec. Microsc. Tech.).Google Scholar
14. Moffatt, W.G., The Handbook of Binary Phase Diag-ams, vol.2 (Genium Pub. Corp., New York 1987).Google Scholar
15. Shunk, R.A., Constitution of Binary Alloys. Second Supplement (McGraw-Hill Book Comp., 1969) p.155 Google Scholar