Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:10:37.783Z Has data issue: false hasContentIssue false

Microstructure and High Temperature Properties of 85% Al2O3-15% SiO2 Fibers

Published online by Cambridge University Press:  15 February 2011

D. M. Wilson
Affiliation:
Metal Matrix Composite Department 3M Co., St. Paul, MN 55144–1000
S. L. Lieder
Affiliation:
Metal Matrix Composite Department 3M Co., St. Paul, MN 55144–1000
D. C. Lueneburg
Affiliation:
Metal Matrix Composite Department 3M Co., St. Paul, MN 55144–1000
Get access

Abstract

A new sol/gel fiber which exhibits exceptional high temperature properties was recently developed at 3M. This fiber has the composition 85% Al2O3-15% SiO2 (85A-15S). High temperature tensile strength and creep properties were measured in the temperature range 1000°C – 1300°C. The creep rate for the 85A-15S fibers was three orders of magnitude less than single phase polycrystalline alumina fibers such as Nextel 610, and 90% of room tensile strength was retained at 1250°C. These exceptional high temperature properties were attributed to a unique, two-phase microstructure consisting of globular and elongated grains of a-Al2O3 and mullite (3Al2O3-2SiO2). The room temperature single filament strength of the 85% Al2O3-15% SiO2 fibers was 2130 MPa, and the elastic modulus was 260 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, I-W. and Xue, L. A., “Development of Superplastic Structural Ceramics”, J. Am. Ceram. Soc., 73 (9) 25852609 (1990).Google Scholar
2. Wilson, D. M., Lueneburg, D. C. and Lieder, S. L., “High Temperature Properties of Nextel 610 and Alumina-Based Nanocomposite Fibers:, Cer. Eng. Sci. Proc. 14 (7–8) 609621 (1993).Google Scholar
3. Cooke, T. F., “Inorganic Fibers-A Literature Review”, J. Am. Ceram. Soc. 74 (12) 2959–78 (1991).Google Scholar
4. Cannon, W. R. and Langdon, T. R., “Review: Creep of Ceramics Part 1: Mechanical Properties”, J. Mat. Sci., 18 (1983) 150.Google Scholar
5. Cannon, R. M., Rhodes, W. H., and Heuer, A. H., “Plastic Deformation of Fine-Grained Alumina (A1203): I, Interface-Controlled Diffusional Creep”, J. Am. Ceram. Soc., 63 (1–2) 4653 (1980).Google Scholar
6. Sherby, O. D. and Wadsworth, J., “Observations on Historical and Contemporary Developments in Superplasticity”, pp. 314 in Mat. Res. Soc. Symp. Proc. Vol. 196 ®1990 Materials Research Society.Google Scholar
7. Arzt, E., Ashby, M. F., and Verrall, R. A., “Interface Controlled Diffusional Creep”, Acta Met., 31 (12) 19771989 (1983).Google Scholar
8. Raj, R. and Ashby, M. F., “On Grain Boundary Sliding and Diffusional Creep”, Met. Trans., 2(1113–1127) 1971.Google Scholar
9. Yoldas, B. E., “Effect of Ultrastructure on Crystallization of Mullite”, J. Mat. Sci., 27 (1992) 66676672.Google Scholar
10. Low, I. M. and McPherson, R., “The Origins of Mullite Formation”, J. Mat. Sci., 24 (1989) 926936.Google Scholar
11. Richards, E. A., Goodbrake, C. J., and Sowman, H. G., “Reactions and Microstructure Development in Mullite Fibers”, J. Am. Ceram. Soc. 74 (10) 2404–409 (1991).Google Scholar
12. Van der Zwang, S., “The Concept of Filament Strength and the Weibull Modulus”, J. Test. Eval. 17 (5) 292298 (1989).Google Scholar
13. Bergman, B., “On the Estimation of the Weibull Modulus”, J. Mat. Sci., 3 (1984) 689692.Google Scholar
14. Li, C-T. and Langley, N. R., “Improvement in Fiber Testing of High-Modulus Single Filament Materials”, J. Am. Ceram. Soc., 68 (8) C-202-C-204 (1985).Google Scholar
15. Cullity, B. D., Elements of X-Ray Diffraction, 2nd Ed., p 103. Publ. by Addison-Wesley, 1978.Google Scholar
16. McArdle, J. L. and Messing, G. L.Transformation, Microstructure Development and Densification in a- Fe2O3-Seeded Boehmite-Derived Alumina”, J. Am. Ceram. Soc., 76 (1) 214222 (1993).Google Scholar
17. Pysher, D. J., Goretta, K. C., Hodder, R. S. Jr. and Tressler, R. E., ” Strengths of Ceramic Fibers at Elevated Temperatures”, J. Am. Ceram. Soc., 72 (2) 284–88 (1989).Google Scholar
18. Davis, R. F. and Pask, J. A., “Mullite”, pp. 3776 in High Temperature Oxides, Part IV, Alper, A. M., ed., Academic Press, N.Y. (1971).Google Scholar
19. De Arellano-Lopez, A. R., Domingues-Rodrigues, A., Goretta, K. C., and Routbort, J. L., ”Plastic Deformation Mechanisms in SiC-Whisker-Reinforced Alumina”, J. Am. Ceram. Soc., 76 (6) 1425–32 (1993).Google Scholar
20. Wang, P., Grathwohl, G., and Thummler, F., ”Creep Behaviour of SiC-Whisker-Reinforced Al2O3-ZrO2.i Composites”, Powder Met. Int., 24 (6) 365372 (1992).Google Scholar