Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T10:58:51.298Z Has data issue: false hasContentIssue false

Microstructural Study of as-cast Fe-Si Alloys. Effect of Percentage of Silicon

Published online by Cambridge University Press:  31 January 2012

María G. González F.
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Coyoacán, 04510 México, D. F. Email: hajpu@yahoo.com.mx
José A. García H.
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Coyoacán, 04510 México, D. F. Email: hajpu@yahoo.com.mx
A. Balandra
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Coyoacán, 04510 México, D. F. Email: hajpu@yahoo.com.mx
V. Aranda.
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Coyoacán, 04510 México, D. F. Email: hajpu@yahoo.com.mx
Get access

Abstract

Silicon steels are materials used in construction of electric motors and transformers. Silicon is an effective element to improve the electrical and magnetic properties. During the solidification stage is defined the distribution of solute on the solid as segregation or coring. This paper researched the effect of the percentage of silicon on the microstructure and segregation profiles of the Fe-0.5wt%Si, Fe-1.5wt%Si and Fe-3wt%Si cast alloys. The samples were metallographically prepared by conventional techniques. The concentration of silicon in grain boundary regions was carried out by scanning electron microscopy (SEM) with EDS-WDS microanalysis, the morphological changes of the grain as a function of silicon was evaluated by optical microscopy. Experimental microsegregation patterns showed significant difference from the Scheil model and greater agreement with this model when considering convective-diffusive conditions. The microstructural study revealed discrepancies with the solidification pattern governed by the solidification interval.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barrosa, J., Ros-Yañez, T., Houbaert, Y., J. Magn. Mater., 290-291 (2), 1457 (2005).Google Scholar
2. Sidor, Y., Kovac, F., Kvackaj, T., Acta Mater., 55, 1711 (2007).Google Scholar
3. Won, Y. M. and Thomas, B. G., Metall Mat. Trans. A, 32, 1755 (2001).Google Scholar
4. Flemings, M., “Microstructure development during metalcasting”, “ Solidification Processing”, Ed. Mc Graw-Hill Book Company (ASM, 2000) pp. 99124.Google Scholar
5. Kurz, W., “Fundamentals of solidification”, Ed. Trans. Tech. S.A. (1984)Google Scholar
6. Geiger, G., “Transport Phenomena in Metallurgy”, Ed. Addison-Wesley (1973).Google Scholar
7. Yatsenko, A., Grushko, P. and Repina, N., Met. Sci. Heat Treat, 35(2), 63 (1993).Google Scholar
8. Calderon, F., Sano, N. and Matsushita, Y., Metall Mater. Trans. B, 2(12), 3325 (1971).Google Scholar
9. Campbell, J., “ Castings”, Ed. Heinemann, Butterworth (Elsevier Science 2003), pp 176177.Google Scholar
10. Asta, M., Beckermann, C. and Karma, A., Acta Mater., 57, 941 (2009).Google Scholar
11. ASM HandbookAlloy Phase Diagrams” Vol. 3, Ed. ASM Handbook (ASM International, 1992) pp. 860, 861.Google Scholar