Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T08:46:33.453Z Has data issue: false hasContentIssue false

Microstructural Evolution of Radiation Induced Defects In ZnO During Isochronal Annealing

Published online by Cambridge University Press:  15 February 2011

S. Brunner
Affiliation:
Institut für Technische Physik, Technische Universität Graz, A-8010 Graz, Austria
W. Puff
Affiliation:
Institut für Technische Physik, Technische Universität Graz, A-8010 Graz, Austria
P. Mascher
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
A.G. Balogh
Affiliation:
Department of Materials Science, Technische Hochschule Darmstadt, Darmstadt, Germany
Get access

Abstract

In this study we discuss the microstructural changes after electron and proton irradiation and the thermal evolution of the radiation induced defects during isochronal annealing. The nominally undoped samples were irradiated either with 3 MeV protons to a fluence of 1.2× 1018 p/cm2 or with 1 MeV electrons to a fluence of 1×1018 e/cm2. The investigation was performed with positron lifetime and Doppler-broadening measurements. The measurements were done at room temperature and in some cases down to 10 K to investigate the thermal dependence of the trapping characteristics of the positrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smith, J.M. and Vehse, W.E., Phys. Lett. 31 A, 147 (1970).Google Scholar
2 Taylor, A.L., Filipovich, G., and Lindeberg, G.K., Solid State Commun. 8, 1359 (1970).Google Scholar
3 Galland, D. and Herve, A., Solid State Commun. 14, 953 (1974).Google Scholar
4 Pöppl, A. and Völkel, G., phys. stat. sol. (a) 125, 571 (1991).Google Scholar
5 Schallenberger, B. and Hausmann, A., Z. Physik B 23, 177 (1976).Google Scholar
6 Schallenberger, B. and Hausmann, A., Z. Physik B 44, 143 (1981).Google Scholar
7 Puff, W., Comput. Phys. Commun. 30, 359 (1983).Google Scholar
8 Puff, W. and Meng, X.-T., J. Appl. Phys. 73, 648 (1993).Google Scholar
9 West, R. N., Adv. Phy. 22, 66 (1973).Google Scholar
10 Puff, W., Brunner, S., Mascher, P., and Balogh, A.G. et al. , Mater. Sci. Forum 196–201, 333 (1995).Google Scholar
11 Puff, W., Brunner, S., Mascher, P., and Balogh, A.G., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N.M., and Sopori, B.L. (Mater. Res. Soc. Proc. 378, Pittsburgh, PA, 1995) pp. 977.Google Scholar
12 Puff, W., Brunner, S., Mascher, P., in The Physics of Semiconductors, edited by Lockwood, D. J. (World Scientific Publ., Singapore 1995) p. 2439.Google Scholar
13 Zhong, J., Kitai, H.A., Mascher, P., and Puff, W., J. Electrochem. Soc. 140, 3644 (1993).Google Scholar
14 Cruz, R.M. de la, Pareja, R., Gonzalez, R., Boatner, L.A., and Chen, Y., Phys. Rev. B 45, 6581 (1992).Google Scholar
15 Tessaro, G. and Mascher, P., Materials Sci. Forum 258–263, 1335 (1997).Google Scholar
16 Gavryushin, V., Raciukaitis, G., Juodzbalis, D., Kazalauskas, A., and Kubertavicius, V., J. Cryst. Growth 138, 924 (1994).Google Scholar
17 Dlubek, G. and Krause, R., phys. stat. sol. (a) 102, 443 (1987).Google Scholar
18 Dannefaer, S. in Defect Control in Semiconductors, edited by Sumino, K. (North-Holland, Amsterdam, 1990) pp. 1571.Google Scholar
19 Mascher, P., Dannefaer, S., and Kerr, D., Phys. Rev. B 40, 11764 (1989).Google Scholar
20 Puska, M.J., Corbel, C., and Nieminen, R.M., Phys. Rev. B 41, 9980 (1990).Google Scholar
21 Hausmann, A., Z. Physik 237, 86 (1970).Google Scholar