Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:41:30.468Z Has data issue: false hasContentIssue false

Microstructural characterization of GaN-GaAs alloys grown on (001) GaAs by molecular beam epitaxy

Published online by Cambridge University Press:  21 March 2011

Hyonju Kim
Affiliation:
Applied Semiconductor Physics, Department of Microelectronics and Nanoscience, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden
T. G. Andersson
Affiliation:
Applied Semiconductor Physics, Department of Microelectronics and Nanoscience, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden
U. Södervall
Affiliation:
Applied Semiconductor Physics, Department of Microelectronics and Nanoscience, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden
C. Jäger
Affiliation:
Technische Fakultaet, Christian-Albrechts-Universitaet zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
W. Jäger
Affiliation:
Technische Fakultaet, Christian-Albrechts-Universitaet zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
M. Albrecht
Affiliation:
Universitaet Erlangen-Nuernberg, Institut fuer Werkstoffwissenschaften, Lehrstuhl Mikrocharakterisierung Cauerstr.6, 91058 Erlangen, Germany
G. Bösker
Affiliation:
Institut fur Metallforschung, Universität Munster, D-48149 Munster, Germany
N. A. Stolwijk
Affiliation:
Institut fur Metallforschung, Universität Munster, D-48149 Munster, Germany
Get access

Abstract

We have investigated microstructural properties of GaAs:N and GaN:As layers using transmission electron microscopy. The samples were grown onto (001)-oriented GaAs substrates by RF-plasma assisted molecular beam epitaxy. It has been found that during the GaAs/GaAs:N epitaxial growth the supplied active nitrogen atoms gave rise to nanometer-size GaN crystallites formed in the GaAs matrix. In addition, silicon incorporation showed abnormal behavior at the two interfaces of the thin GaAs:N layer embedded in GaAs. A model is proposed for the formation of GaN crystallites in GaAs during the growth. In the GaN:As growth, the layer exhibited columnar growth, resulting in domains with different crystallographic orientation. With an increase of the film thickness, the zincblende structure changed to the wurtzite phase of GaN. The distribution of arsenic through the layer thickness was found to be inhomogeneous and be much higher near the GaN/GaAs interface compared to the region near the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M. C., Nakahara, K., Yazawa, Y., and Okai, M., IEEE J. Selected Topics in Quantum Electronics, 3, 719 (1997).Google Scholar
[2] Wei, Su-Huai, and Zunger, Alex, Phys. Rev. Lett., 76, 664 (1996).Google Scholar
[3] Bösker, G., Stolwijk, N. A., Thordson, J. V., Södervall, U., and Andersson, T. G., Phys. Rev. Lett., 81, 3443 (1998).Google Scholar
[4] Stolwijk, N. A., Bösker, G., Thordson, J. V., Södervall, U., Andersson, T. G., Jäger, Ch., and Jäger, W., Physica B, 273, 685 (1999).Google Scholar
[5] Thordson, J. V., Zsebok, O., Södervall, U., and Andersson, T.G., MIJ-NSR, 2, (1997).Google Scholar
[6] Xin, Y., Browna, P. D., Dunin-Borkowskia, R. E., Humphreysa, C. J., Chengb, T. S., and Foxon, C. T., J. Crystal Growth, 171, 321 (1997).Google Scholar
[7] Foxon, C.T., Novikov, S.V., Cheng, T.S., Davis, C.S., Campion, R.P., Winser, A.J., and Harrison, I., J. Crystal Growth, 219, 327 (2000).Google Scholar
[8] Foxon, C. T., Novikov, S. V., Campion, R. P., Davis, C. S., Cheng, T. S., Winser, A. J., and Harrison, I., J. Crystal Growth, 227, 486 (2001).Google Scholar
[9] Feuillet, G., Hamaguchi, H., Ohta, K., Hacke, P., Okumura, H., and Yoshida, S., Appl. Phys. Lett., 70, 1025 (1997).Google Scholar
[10] Okumura, H., Hamaguchi, H., Feuillet, G., Ishida, Y., and Yoshida, S., Appl. Phys. Lett., 72, 3056 (1998).Google Scholar
[11] Zhao, Y., Deng, F., Lau, S. S., and Tu, C. W., J. Vac. Sci. Technol. B, 16, 1297 (1998).Google Scholar
[12] Yoshida, S., Kimura, T., Wu, J., Kikawa, J., Onabe, K., and Shiraki, Y., MIJ-NSR, 5S1, (2000).Google Scholar
[13] Cheng, T. S., Jenkins, L. C., Hooper, S. E., Foxon, C. T., Ber, B. Ya., Merkulov, A. V., Novikov, S. V., and Tret'yakov, V. V., Semiconductors, 30, 164 (1996).Google Scholar