Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T18:10:20.960Z Has data issue: false hasContentIssue false

Microstructural Characterization Methods for Magnetic Thin Films

Published online by Cambridge University Press:  10 February 2011

J. E. Wittig
Affiliation:
Vanderbilt University, Nashville, TN 37235
J. Bentley
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6376
T. P. Nolan
Affiliation:
Komag Inc., 1704 Automation Parkway, San Jose, CA 95131
Get access

Abstract

Microstructural characterization is key to determining the structure-property-processing relationships required to optimize the performance of magnetic thin films for longitudinal magnetic recording. Since the grain size of modem recording media is on the order of 10 to 20 nm, only high-resolution characterization methods such as transmission electron microscopy (TEM) can accurately describe the microstructure. Complete analysis requires a combination of conventional and high-resolution TEM imaging with analytical methods such as energy dispersivespectroscopy and energy-filtered TEM imaging. This paper provides examples from CoCr(Pt,Ta) alloys that reveal the strengths and limitations of these characterization methods as they apply to microstructural characterization of magnetic thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nolan, T. P., Sinclair, R., Ranjan, R. and Yamashita, T., IEEE Trans. Magn., 29, p. 292 (1993).Google Scholar
2. Wong, B., Shen, Y. and Laughlin, D. E., J. Appl. Phys., 73, p. 418 (1993).Google Scholar
3. Nolan, T. P., Sinclair, R., Ranjan, R., Yamashita, T., Tarnopolsky, G. and Bennett, W., Mater. Res. Soc. Proc. 343, San Francisco, CA 1994, p. 297302.Google Scholar
4. Hosoe, Y., Yahisa, Y., Tsuchiyama, R., Ishikawa, A., Yoshida, K., Igarashi, M. and Shiroishi, Y., IEEE Trans. Magn., 31, p. 2824 (1995).Google Scholar
5. Kim, M. R., Guruswamy, S. and Johnson, K. E., IEEE Trans. Magn., 29, p. 3673 (1993).Google Scholar
6. Inaba, N., Yamamoto, T., Hosoe, Y. and Futamoto, M., JMMM 168, p. 222 (1997).Google Scholar
7. Wittig, J.E., Bentley, J., and Nolan, T.P., Mater. Res. Soc. Proc. 517, San Francisco, CA 1998, p. 211216.Google Scholar
8. Yahisa, Y., Kimoto, K., Usami, K., Matsuda, Y., Inagaki, J., K, Furusawa and Narashige, S., IEEE Trans. Magn., 31, p. 2836 (1995).Google Scholar
9. Kimoto, K., Hirayama, Y. and Futamoto, M., JMMM 159, p. 401 (1996).Google Scholar
10. Futamoto, M., Inaba, N., Hirayama, Y., Ito, K. and Honda, Y., Mater. Res. Soc. Proc. 517, San Francisco, CA 1998, p. 243254.Google Scholar
11. Bentley, J., Wittig, J.E., and Nolan, T.P., Mater. Res. Soc. Proc. 517, San Francisco, CA 1998, p. 205210.Google Scholar
12. Wittig, J.E., Nolan, T. P., Ross, C. A., Schabes, M. E., Tang, K., Sinclair, R. and Bentley, J., IEEE Trans. Magn., 34, p. 1564 (1998).Google Scholar
13. Anderson, I.M., Bentley, J., and Busby, J.R., submitted to J. Microscopy.Google Scholar
14. Bentley, J., Kenik, E. A., Evans, N. D., Hall, E. L. and Zinkle, S. J., Proc. EMAG95, Inst. Phys. Conf. Ser. 147, Bristol, 1995, p. 187.Google Scholar