Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T19:35:08.006Z Has data issue: false hasContentIssue false

Microstructural and Magnetotransport (EHE) Properties of Epitaxial τ-MnAl on (100)GaAs Substrates by Pulsed Laser Deposition

Published online by Cambridge University Press:  15 February 2011

T. M. Rosier
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, N.C. 27695–7916.
Y. He
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, N.C. 27695–7916.
N. A. El-Masry
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, N.C. 27695–7916.
Get access

Abstract

We report on the crystal quality and magnetotransport properties (EHE) of epitaxial (001) τ-MnA1/GaAs(100) grown by the laser ablation deposition technique. Films (10–30 nm thick) were grown by two methods: (1) ablating a τ-MnAl target, prepared in-house; (2) alternate deposition of ultra thin layers of Mn and Al (˜6 periods) followed by annealing at different temperatures. For both deposition approaches ultrathin coherent epitaxial τ-MnAl films have been grown at temperatures in the range 250–420°C that is below the ε-phase transformation temperature. Reflection high energy electron diffraction (RHEED) and high resolution transmission electron microscopy (HRTEM) were used to characterize the crystalline quality of the deposited films. The Extraordinary Hall Effect measurements (EHE) indicate that the deposited films are perpendicularly magnetized showing coercivity up to 6 kOe at room temperature. The epitaxial growth of thin film ferromagnetic materials on lattice matching semiconductor substrates offers the possibility of integrating magnetic and semiconducting devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prinz, G. A., Science, 250, 1092 (1990).Google Scholar
2. Morisako, A., Matsumoto, M. and Naoe, M., J. Appl. Phys., 61, 4281(1987).Google Scholar
3. Koch, A.J. J., Hokkeling, P., Steeg, M. G. V. D., and Vos, K. J. des, J. Appl. Phys., 31, 75s (1960).Google Scholar
4. Koster, W. and Wachtel, E., Metallkd, Z., 51, 271 (9160).Google Scholar
5. Cheeks, T. L. et al J. Appl. Phys., 73(10), 6121(1993).Google Scholar
6. Griedames, F. J. A. M. and Zeber, W. B., Mat. Res. Bull. XV, 31(1990).Google Scholar
7. Sands, T., Harbison, J. P., Allen, S. J. Jr.,, Leadbeater, M. L., Cheeks, T. L., Brasil, M. J. S. P., Chang, C. C., Ramesh, R., Florez, L. T., Derosa, F. and Keramidas, V. G., Mat. Res. Soc. Symp. Proc. 231, Plen, Jr,., Leadbeater, M. L., Cheeks, T. L., Brasil, M. J. S. P., Pittsburgh, 341(1992).Google Scholar
8. Rosier, T. M., He, Y. W. and El-Masry, N. A., Accepted for publication in Materials Letters.Google Scholar
9. Hajjar, R. A. and Mansuripur, M., J. Appl. Phys. 72, 1582 (1992).Google Scholar