Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T11:01:33.027Z Has data issue: false hasContentIssue false

A Microfluidic Assay for Measuring Electrical Conductivity of Gap Junction Channels

Published online by Cambridge University Press:  12 January 2012

Cedric Bathany
Affiliation:
Department of Mechanical and Aerospace Engineering, SUNY-Buffalo, Buffalo, NY 14260, U.S.A.
Frederick Sachs
Affiliation:
Department of Physiology and Biophysics, SUNY –Buffalo, Buffalo, NY 14260, U.S.A.
Susan Z. Hua
Affiliation:
Department of Mechanical and Aerospace Engineering, SUNY-Buffalo, Buffalo, NY 14260, U.S.A. Department of Physiology and Biophysics, SUNY –Buffalo, Buffalo, NY 14260, U.S.A.
Get access

Abstract

We have developed a microfluidic sensor to measure the electrical coupling through gap junctions across a 2D sheet of cultured Normal Rat Kidney cells. The chip is based on a tri-stream laminar flow with conductive solutions on either end and a nonconductive solution in the middle stream. When an electrical voltage is applied, the current can only pass through the cell sheet, thereby enabling us to measure the electrical coupling of gap junctions between cells. Using this sensor we have measured the effect of 2-aminoethoxydiphenyl borate (2-APB) on Cx43 channels. We show that 2-APB reversibly inhibits electrical coupling of Cx43 in NRK cells. Moreover, we screened other potential candidates to block Cx43, 1-Heptanol and GsMTx-4, and examined their effects on Cx43 gap junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harris, A. L., Q. Rev. Biophys. 34, 3 (2001).Google Scholar
2. Harks, E. G. A., Camiña, J. P., Peters, P. H. J., Ypey, D. L., Scheenen, W. J. J. M., Van Zoelen, E. J. J., Theuvenet, A. P. R., FASEB J. 17 (2003)Google Scholar
3. Lee, P. J., Hung, P.J., Shaw, R., Jan, L., Lee, L. P., Appl. Phys. Lett. 86, 223902 (2005).Google Scholar
4. Seo, J., Ionescu-Zanetti, C., Diamond, J., Lal, R., Lee, L.P., Appl. Phys. Lett. 84, 11 (2004).Google Scholar
5. Daleau, P., Deleze, J., Can. J. Physiol. Pharmacol. 76, 6 (1998).Google Scholar
6. Pennell, T., Suchyna, T., Wang, J., Heo, J., Felske, J. D., Sachs, F., Hua, S. Z., Anal. Chem. 80, 7 (2008).Google Scholar
7. Bathany, C., Beahm, D., Felske, J. D., Sachs, F., Hua, S. Z., Anal. Chem. 83, 3 (2011).Google Scholar
8. Bootman, M. D., Collins, T.J., MacKenzie, L., Roderick, H. L., Berridge, M. J., Peppiatt, C., FASEB J. 16 (2002).Google Scholar
9. Boengler, K., Schulz, R., Heusch, G., Heart 92 (2006).Google Scholar
10. Juszczak, G. R., Swiergiel, A. H., Prog. Neuro-Psychopharmacol. Biol. Psychiatry 33, 18 (2009).Google Scholar
11. Suchyna, T. M., Johnson, J. H., Hamer, K., Leykam, J. F., Gage, D. A., Clemo, H. F., Baumgarten, C. M., Sachs, F. J. Gen. Physiol. 115, 5 (2000).Google Scholar