Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-14T19:01:24.625Z Has data issue: false hasContentIssue false

Methods of Improving Glow-Discharge-Deposited a-Si1−xGex:H

Published online by Cambridge University Press:  21 February 2011

Y. S. Tsuo
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
Y. Xu
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
E. A. Ramsay
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
R. S. Crandall
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
S. J. Salomon
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
I. Balberg
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
B. P. Nelson
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
Y. Xiao
Affiliation:
University of Colorado, Boulder, CO 80309
Y. Chen
Affiliation:
Colorado School of Mines, Golden, CO 80401
Get access

Abstract

We have studied methods of improving glow-discharge-deposited a-Si1−x Gex :H alloys deposited using silane and germane gas mixtures. Material processing methods studied include (1) varying the substrate temperature from 170° to 280°C, (2) varying the process gas composition and pressure, (3) dilution of the feed gas by hydrogen, argon, or helium, (4) enhancing etching during deposition by adding small amounts of XeF2 vapor into the process gas, and (5) postdeposition annealing and/or hydrogenation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ichikawa, Y., Fujikake, S., Yoshida, T., Hama, T., and Sakai, H., Proc. 21st IEEE Photovoltaic Specialists Conf‥ pp. 14751480 (1990).CrossRefGoogle Scholar
2. Stutzmann, M., Street, R.A., Tsai, C.C., Boyce, J.B., and Ready, S.E., J. Appl. Phys. 66, 569 (1989).Google Scholar
3. Guha, S., Yang, J., Pawlikiewicz, A., Glatfelter, T., Ross, R., and Ovshinsky, S.R., Appl. Phys. Lett. 54, 2330 (1989).CrossRefGoogle Scholar
4. Lucovsky, G., J. Non-Crystalline Solids 76, 173 (1985).Google Scholar
5. Matsuda, A., Koyama, M., Ikuchi, N., Hnanishi, Y., and Tanaka, K., Japn. J. Appl. Phys. 25, L54 (1986).Google Scholar
6. Luft, W., Appl. Phys. Comm. 9, 43 (1989).Google Scholar
7. Balberg, I., Delahoy, A.E., and Weakliem, H.A., Appl. Phys. Lett. 53, 992 (1988).CrossRefGoogle Scholar
8. Mahan, A.H., Williamson, D.L., Nelson, B.P., and Crandall, R.S., Phys. Rev. B40, 12024 (1989).Google Scholar
9. Crandall, R.S., Tsuo, Y.S., Xu, Y., Mahan, A.H., and Williamson, D.L., Solar Cells, to be published.Google Scholar
10. Catalano, A., Proc. 21st IEEE Photovoltaic Specialists Conf., pp. 3640 (1990).Google Scholar
11. Tsuo, Y.S. and Luft, W., Appl. Phys. Comm. 10, 71 (1990).Google Scholar
12. Oehrlein, G.S., Bestwick, T.D., Jones, P.L., and Corbett, J.W., Appl. Phys. Lett. 56, 1436 (1990).CrossRefGoogle Scholar
13. Tsuo, Y.S., Weil, R., Asher, S., Nelson, A., Xu, Y., and Tsu, R., Proc. 19th IEEE Photovoltaics Specialists Conf., pp. 705709 (1987).Google Scholar
14. Tsuo, Y.S., Deng, X.J., Smith, E.B., Xu, Y., and Deb, S.K., J. Appl. Phys. 64, 1604 (1988).CrossRefGoogle Scholar
15. Tsuo, Y.S., Smith, E.B., and Deb, S.K., Appl. Phys. Lett. 51, 1436 (1987).Google Scholar