Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T16:25:30.375Z Has data issue: false hasContentIssue false

Metastable Phenomena in the Thermally Activated Conductivity of Hydrogenated Amorphous Germanium (a-Ge:H)

Published online by Cambridge University Press:  01 January 1993

T. DrÜsedau
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138 Feodor Lynen-Fellow of the Alexander von Humboldt - Foundation, Inst. Exper. Physik, Tech. Univ. “Otto von Guericke” , O-3010 Magdeburg , Germany
D. Pang
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
E. Sauvain
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
P. Wickboldt
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
E.Z. Liu
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
J.H. Chen
Affiliation:
Boston College Dept. of Physics, Chestnut Hill, MA 02167
W. Paul
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
Get access

Abstract

The activated conductivity of a-Ge:H between room temperature and 460K was investigated using heating and cooling rates in the range between .001 and 0.1 K/s. A splitting of the cooling curves obtained at different rates, which defines the so called equilibrium temperature TE, is observed mainly between 420 and 430K. Taking into consideration that TE depends on the maximum cooling rate, the present results are in good agreement with those reported by Eberhardt et al. The higher cooling rate always leads to the lower conductivity at any temperature below TE. These effects can be rationalized in terms of a reversible shift of the Fermi level towards midgap at higher temperature. Though reversible changes of the mobility cannot be excluded, they cannot account for our set of experimental data. Rather, changes in the density of electronic states within the mobility gap can explain the effects observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kakalios, J. and Street, R. A., Phys. Rev. B 34, 6014 (1986).Google Scholar
2. Smith, Z. E., Aljishi, S., Slobodin, D., Chu, V., Wagner, S., Jenahan, P. M., Arya, R. R. and Benett, M. S., Phys. Rev. Lett. 57, 2450 (1986).Google Scholar
3. Xu, X., Morimoto, A., Kumeda, M. and Shimizu, T., Appl. Phys. Lett. 52, 622 (1988).Google Scholar
4. Meaudre, R., Jensen, P. and Meaudre, M., Phys. Rev. B 38, 12449 (1988).Google Scholar
5. Branz, H. M. and Iwaniczko, E. in Amorphous Silicon Technology, edited by Thompson, M. J., Hamakawa, Y., LeComber, P. G., Madan, A. and Schiff, E. A. (Mat. Res. Soc. Proc. 258, Pittsburgh, PA, 1992) pp. 389–294.Google Scholar
6. Kirbs, V., Drüsedau, T. and Fiedler, H., J. Phys.: Condens. Matter 4, 10433 (1992).Google Scholar
7. Street, R. A. and Winer, K., Phys. Rev. B 40, 6236 (1989).Google Scholar
8. Schumm, G. and Bauer, G. H., Phil. Mag. B 64, 515 (1991).Google Scholar
9. Hata, N. and Wagner, S., J. Appl. Phys. 72, 2857 (1992).Google Scholar
10. Ebersberger, B., Pierz, K., Karg, F., Kausche, H., Schneider, U., Schröder, B., Krühler, W.and Plättner, R., 10th European Photovoltaic Solar Energy Conf. (1991).Google Scholar
11. Santos, P. V., Graeff, C. F. de O. and Chambouleyron, I., J. Non-Cryst. Solids 128, 243 (1991).Google Scholar
12. Drüsedau, T. and Schröder, B., J. Appl. Phys. submitted (1993).Google Scholar
13. Shimizu, T., Xu, X. X., Sasaki, H., Yan, H., Morimoto, A. and Kumeda, M. in Amorphous Silicon Technology, edited by Taylor, P. C., Thompson, M. J., LeComber, P. G., Hamakawa, Y. and Madan, A. (Mat. Res. Soc. Proc. 192, Pittsburgh, PA, 1990) pp. 695700.Google Scholar
14. Panckow, A. and Drüsedau, T., unpublishedGoogle Scholar
15. Eberhardt, K., Heintze, M. and Bauer, G. H., J. Non-Cryst. Solids 137&138,(1991).Google Scholar
16. Turner, W. A., Jones, S. J., Pang, D., Bateman, B. F., Chen, J. H., Li, Y. M., Marques, F. C., Wetsel, A. E., Wickboldt, P., Paul, W., Bodart, J., Norberg, R. E., ElZawawi, I. and Theye, M. L., J. Appl. Phys. 67, 7430 (1990).Google Scholar
17. Overhof, H. and Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors. Springer Tracts in Modem Physics 114,(Springer Verlag, Berlin, 1989).Google Scholar