Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T22:49:18.182Z Has data issue: false hasContentIssue false

Metalorganic chemical vapor deposition of quaternary AlInGaN multiple quantum well structures for deep ultraviolet emitters

Published online by Cambridge University Press:  01 February 2011

J. W. Yang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
C. Q. Chen
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
J. P. Zhang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
Q. Fareed
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
H. M. Wang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
M. -Y. Ryu
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
E. Kuokstis
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
G. Simin
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
M. A. Khan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
Get access

Abstract

We report on the growth of quaternary AlInGaN layers and MQWs by two different metalorganic chemical vapor deposition (MOCVD) techniques such as pulsed atomic layer epitaxy (PALE) and pulsed MOCVD (PMOCVD). For both growth processes, emission wavelength of quaternary MQWs can be tuned from 350 nm to 300 nm by simply changing the unit growth cell configurations. The PALE grown AlInGaN MQWs have a very smooth surface, few band tail states and exhibit a band-to-band emission. The PMOCVD grown AlInGaN MQWs exhibit a high density of band tail states, which strongly enhance spontaneous emission. Based on the characterization by photoluminescence, X-ray diffraction and AFM, both MOCVD techniques grown quaternary samples are shown to be promising for fabricating the active region of deep UV LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Heidelberg, 1997).Google Scholar
2) Nagahama, S., Yanamoto, T., Sano, M. and Mukai, T., Jpn. J. Appl. Phys. 40, L 788 (2001).Google Scholar
3) Nishida, T., Saito, H. and Kobayashi, N., Appl. Phys. Lett. 78, 3927 (2001)Google Scholar
4) Deguchi, T., Sekiguchi, K., Nakamura, A., Sota, T., Matsuo, R., Chichibu, S. and Nakamura, S., Jpn. J. Appl. Phys. 38, L914 (1999).Google Scholar
5) Hirayama, H., Kinoshita, A., Hirata, A. and Aoyagi, Y., Phys. Status Solidi A 188, 83 (2001)Google Scholar
6) Aumer, M. E., Leboeuf, S. F., Mcintosh, F. G. and Bedair, S. M., Appl. Phys. Lett. 75, 3315 (1999)Google Scholar
7) Khan, M. A., Yang, J. W., Simin, G., Gaska, R., Shur, M.. Loye, H. Z., Tamulaitis, G., Zukauskas, A., Smith, D. J., Chandrasekhar, D. and Tassius, R. B., Appl. Phys. Lett. 76, 1161 (2000)Google Scholar
8) Zhang, J. P., Kuokstis, E., Fareed, Q., Wang, H. M., Yang, J. W., Simin, G. and Khan, M. A., Appl. Phys. Lett. 79, 925 (2001)Google Scholar
9) Khan, M. A., Skogman, R. A., Hove, J. M. Van, Olson, D. T., and Kuznia, J. N., Appl. Phys. Lett. 60, 1366 (1992)Google Scholar
10) Kuokstis, E., Zhang, J. P., Yang, J. W., Simin, G., Khan, M. A., Gaska, R. and Shur, M., Phys. Status Solidi A 228, 559 (2001)Google Scholar
11) Satake, A., Masumoto, Y., Miyajima, T., Asatsuma, T., Nakamura, F. and Ikeda, M., Phys. Rev. B 57, 2041 (1998)Google Scholar
12) Wang, T., Nakagawa, D., Lachab, M., Sugahara, T. and Sakai, S., Appl. Phys. Lett. 74, 3128 (1999)Google Scholar
13) Chichibu, S., Sota, T., Wada, K. and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998)Google Scholar
14) Cingolani, R., Botchkarev, A., Tang, H., Morkoc, H., Traetta, G., Coli, G., Lomascolo, M., Carlo, A. Di., Sala, F. Della and Lugli, P., Phys. Rev. B 61, 2711 (2000)Google Scholar
15) Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. B 56, 10024 (1997)Google Scholar
16) Ryu, M. -Y., Chen, C. Q., Kuokstis, E., Yang, J. W., Simin, G., Khan, M. A., Sim, G. G. and Yu, P. W., Appl. Phys. Lett. (to be published).Google Scholar