Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T07:51:01.104Z Has data issue: false hasContentIssue false

Metalorganic and Microwave Processing of Eutectic Al2O3-ZrO2 Ceramics

Published online by Cambridge University Press:  15 February 2011

M. Willert-Porada
Affiliation:
Universität Dortmund, Department Chemical Engineering, Div. of Material Sciences, D-44221 Dortmund, F.R. Germany
T. Gerdes
Affiliation:
Universität Dortmund, Department Chemical Engineering, Div. of Material Sciences, D-44221 Dortmund, F.R. Germany
Get access

Abstract

The spatial distribution and sintering activity of ZrO2 governs the microstructure evolution upon microwave sintering of alumina-zirconia ceramics. Using the same microwave sintering profile thermal runaway occurs, when ZrO2-powders with high specific surface area are employed, yielding ceramics with eutectic Al2O3-ZrO2 inclusions, whereas ZTA-type ceramics are obtained from low specific surface area powders. Microwave sintering yields ceramics with a higher density at a particular sintering temperature as compared to conventional sintering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Claussen, N., “Microstructural Design of Zirconia Toughened Ceramics”, Advances in Ceramics, Vol. 12, 325351 (1984),Google Scholar
2. Wang, J. and Raj, R., “Interface Effects in Superplastic Deformation of Alumina Containing Zirconia, Titania or Hafhia as Second Phase”, Acia metall. maier., 11, 29092919 (1991).Google Scholar
3. Homeney, J. and Nick, J. J., “Microstructure-Property Relations of Alumina-Zirconia Eutectic Ceramics”, Mater. Sci. &Eng., A127, 123133 (1990).Google Scholar
4. Claussen, N., Lindemann, G. and Petzow, G., “Rapid Solidification of AbCb-ZrCb-Ceramics” in Ceramic Powders, ed. Vincenzini, P., Elsevier, Amsterdam, pp. 489498 (1983).Google Scholar
5. Kalonji, G., McKittrick, J., and Hobbs, L.W., “Application of Rapid Solidification Theory and Practice to AhCb-ZrCh Ceramics”, Advances in Ceramics, Vol. 12, 816826 (1984),Google Scholar
6. Schmid, F. and Viechnicki, D., “Oriented Eutectic Microstructures in the System Al2O3-ZrO2 ”, J. of Mat. Sci., 5, 470473 (1970).Google Scholar
7. Willert-Porada, M., “Microwave Processing of Metalorganics to Form Powders, Compacts, and Functional Gradient Materials”, MRS Bull., XVIII (11), 5157 (1993).Google Scholar
8. Gerdes, T. and Willert-Porada, M., Proc. of the DGM Annual Meeting 1992, Hamburg (F.R. Germany).Google Scholar
9. R. Hutcheon, unpubl. results, and data quoted by Clark, D.E., Folz, D.C., Schulz, R.L., Fathi, Z., and Cozzi, A.D., MRS Bull. XVIII (11), p. 41 (1993).Google Scholar
10. Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, John Wiley & Sons, 2nd Edition 1976, pp. 639.Google Scholar
11. Willert-Porada, M., Dennhöfer, S., and Hachmeister, D. “Microwave Pyrolysis of Emulsified Ceramic Precursor Compounds”, this volume.Google Scholar
12. Vodegel, S., Willert-Porada, M., Ger. Pat. Appl., P4224974.0, 1992.Google Scholar
13. Fischer, G.R., Manfredo, R.J., McNally, R.N., and Doman, R.C., “The Eutectic and Liquidus in the Al2O3-ZrO2 System”, J. of Mater. Sci., 16, 34473451 (1981).Google Scholar
14. Garvie, R.C., “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect”, J. Phys. Chem., 69 (4), 12381243 (1965); “Stabilisation of the Tetragonal Structure in Zirconia Microcrystals”,Google Scholar
Garvie, R.C., “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect”, J. Phys. Chem., 82 (2), 218224 (1978).Google Scholar
15. Murase, Y., Kato, E., and Daimon, K., “Stability of ZiCfePhases in Ultrafine ZrO2-Al2O3 Mixtures”, J. Amer. Ceram. Soc., 69 (2), 8387 (1986).Google Scholar
16. Willert-Porada, M., “Novel Routes to Microwave Processing of Ceramic Materials”, this volume.Google Scholar