Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T19:01:58.900Z Has data issue: false hasContentIssue false

Metal oxide rods and dots-based structures and devices: cost-effective fabrication and surface chemistry control

Published online by Cambridge University Press:  31 January 2011

Lionel Vayssieres*
Affiliation:
vayssieres.lionel@nims.go.jp, International Center for Materials NanoArchitectonics, National Institute for Materials Science, Namiki, Japan
Get access

Abstract

The necessity of materials development which is not limited to materials that can achieve their theoretical limits, but makes it possible to raise theoretical limits by changing the fundamental underlying physics and chemistry while keep the fabrication cost to a minimum is crucial. Materials nanotechnologies based on chemical fabrication approaches is one of the immediate answer to the enormous need for cost-effective new materials for energy, environment, and health. R&D exploiting chemical nanoscience and nanotechnology has the greatest potential to efficiently contribute to such challenging goals. Indeed, the creation of new materials with higher performance and improved stability achieved by atomic, molecular and nanostructural design and control using unique nanoscale phenomena such as quantum confinements is the key. A synthesis involving the aqueous condensation of metal ions from solutions of metal salts for the low-cost fabrication of engineered arrays consisting of oriented nanorods of metal oxides orientations onto various substrates as well as the ability to control the surface acidity of quantum dots from acidic to neutral to basic by size effect are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rosei, F. et al., Adv. Mater. 20(24), 46274640 (2008)Google Scholar
2http://www.nanotechproject.org/inventories/Google Scholar
3 Vayssieres, L., Appl. Phys. A 89(1), 18 (2007); Int. J. Nanotechnol. 4, 750 (2007); C.R. Chimie 9(5-6), 691-701 (2006); Angew. Chem. Int. Ed. 43 3666 (2004); Int. J. Nanotechnol. 1(1-2), 1-40 (2004); J. Phys. Chem. B 107(12), 2623-2625 (2003); J. Nanosci. Nanotech. 1(4), 385-388 (2001); Pure Appl. Chem. 72(1-2), 47-52 (2000)Google Scholar
4 Vayssieres, L. et al., Chem. Mater. 13(2), 233235 (2001); Nano Lett. 2(12), 1393-1395 (2002)Google Scholar
5 Kennedy, J. H. and Frese, K. W. J. Electrochem. Soc. 125(5), 709714 (1978)Google Scholar
6 Beermann, N. et al., J. Electrochem. Soc. 147(7), 24562461 (2000)Google Scholar
7 Vayssieres, L., “Quantum confined visible-light active nanostructures for direct solar hydrogen generation” in On Solar Hydrogen & Nanotechnology, Vayssieres, L. ed. (Wiley, 2009), pp.523-558; T. Lindgren et al., Sol. Energy Mater. Sol. Cells 71(2), 231-243 (2002)Google Scholar
8 Vayssieres, L. et al., Adv. Mater. 17(19), 23202323 (2005)Google Scholar
9 Vayssieres, L., Adv. Mater. 15(3), 464466 (2003); Chem. Mater. 13(12), 4395-4398 (2001); J. Phys. Chem. B 105(17), 3350-3352 (2001); Physica E 40(4), 859-865 (2008)Google Scholar
10 Persson, C. et al., Microelectron. J. 37(8), 686689 (2006); C.L. Dong et al., Phys. Rev. B 70, 195325 (2004); A. Henningsson et al., Adv. Quant. Chem. 47, 23 (2004); J.-H. Guo et al., J. Phys.: Condens. Matter 14(28), 6969-6974 (2002)Google Scholar
11.Mao, S.S. Int. J. Nanotechnol. 1(1-2), 4285 (2004); M. H. Huang et al., Science 292, 1897-1899 (2001)Google Scholar
12 Vayssieres, L. and Sun, X. W. Sensor Lett. 6(6), 787791 (2008); J.X. Wang et al., Nanotechnology 17(19), 4995-4998 (2006); L. Vayssieres, Chem. Sensors 20(B), 324-325 (2004)Google Scholar
13 Keis, K. et al., J. Electrochem. Soc. 148(2), A149155 (2001); Nanostruct. Mater. 12(1-4), 487-490 (1999)Google Scholar
14 Sun, X. W. et al., Appl. Phys. Lett. 95(13), 133124 Google Scholar
15 Xu, X.C. and Sun, X. W. Int. J. Nanotechnol. 1(4), 452463 (2004)Google Scholar
16 Rabenberg, L. and Vayssieres, L., Microsc. Microanal. 9(2), 402403 (2003)Google Scholar
17 Alivisatos, A. P. Science 271, 933 (1996); W. P. Halperin Rev. Mod. Phys. 58, 533 (1986)Google Scholar
18 Hu, J. et al., J. Environ. Eng. 132, 709 (2006)Google Scholar
19 Vayssieres, L., J. Phys. Chem. C 113(12), 47334736 (2009); Int. J. Nanotechnol. 2(4), 411-439 (2005); J. Colloid Interface Sci. 205(2), 205-212 (1998) ; Ph.D. Thesis Université Pierre et Marie Curie (Paris, France, 1995), pp.1-145Google Scholar