Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T01:51:01.876Z Has data issue: false hasContentIssue false

Mesoporous Silica and Titania by Glycol-Modified Precursors

Published online by Cambridge University Press:  17 March 2011

Jasmin Geserick
Affiliation:
Institute of Inorganic Chemistry I, Ulm University, Ulm, 89081, Germany
Nicola Hüsing
Affiliation:
Institute of Inorganic Chemistry I, Ulm University, Ulm, 89081, Germany
Renate Roßmanith
Affiliation:
Institute of Organic Chemistry III, Ulm University, Ulm, 89081, Germany
Clemens K. Weiss
Affiliation:
Institute of Organic Chemistry III, Ulm University, Ulm, 89081, Germany
Katharina Landfester
Affiliation:
Institute of Organic Chemistry III, Ulm University, Ulm, 89081, Germany
Yvonne Denkwitz
Affiliation:
Institute of Surface Chemistry and Catalysis, Ulm University, Ulm, 89081, Germany
R. Jürgen Behm
Affiliation:
Institute of Surface Chemistry and Catalysis, Ulm University, Ulm, 89081, Germany
Ute Hörmann
Affiliation:
Electron Microscopy Group of Material Sciences, Ulm University, Ulm, 89081, Germany
Ute Kaiser
Affiliation:
Electron Microscopy Group of Material Sciences, Ulm University, Ulm, 89081, Germany
Get access

Abstract

Ethylene glycol modified precursors, such as tetrakis(2-hydroxyethyl)orthosilicate (EGMS) or bis(2-hydroxyethyl)titanate (EGMT), have distinct advantages in the synthesis of mesoporous materials by sol-gel processing compared to the commercially available tetraalkoxide precursors. The glycols released upon hydrolysis have proven to be compatible with lyotropic surfactant mesophases and in addition, these precursors allow for processing in purely aqueous conditions. Besides the standard characterization of the resulting titania and silica-based materials by XRD, electron microscopy, and nitrogen sorption, the potential of the titania-based materials for catalytic applications was tested using Au/TiO2 catalysts in low temperature CO oxidation reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kresge, C., Leonowicz, M., Roth, W., Vartuli, J., Beck, J., Nature, 359, 710 (1992).Google Scholar
[2] Antonelli, D., Ying, J., Angew. Chem., 107, 2202 (1995).Google Scholar
[3] Liu, P., Reddy, J., Adnot, A., Sayari, A., Mat. Res. Soc. Symp. Proc., 431, 101 (1996).Google Scholar
[4] Liu, P., Liu, J., Sayari, A., Chem. Commun., 577 (1997).Google Scholar
[5] Pacheco, G., Zhao, E., Garcia, A., Sklyarov, A., Fripiat, J., J. Mater. Chem., 8, 219 (1998).Google Scholar
[6] Stein, A., Fendorf, M., Jarvie, T., Mueller, K., Garcia, M., Mallouk, T., Mat. Res. Soc. Symp. Proc., 371, 69 (1995).Google Scholar
[7] Stone, V., Davis, R., Chem. Mater., 10, 1468 (1998).Google Scholar
[8] Fujishima, A., Honda, K., Nature, 37, 238 (1972).Google Scholar
[9] Shibata, H., Mihara, H., Mukai, T., Ogura, T., Kohno, H., Ohkubo, T., Sakai, H., Abe, M., Chem. Mater., 18, 2256 (2006).Google Scholar
[10] Wan, Y., Shi, Y., Zhao, D., Chem. Commun., 897 (2007).Google Scholar
[11] Mitra, A.; Imae, T.; Shchipunov, Y.A. Fibrous silica composites fabricated via sol-gel processing using amino acid surfactant templating. J. Sol-Gel Sci. Technol. 34, 127 (2005).Google Scholar
[12] Shchipunov, Y. A.; Karpenko, T. Y. Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique. Langmuir 20, 3882 (2004).Google Scholar
[13] Brandhuber, D., Hüsing, N., Peterlik, H., J. Mater. Chem., 15, 3896 (2005).Google Scholar
[14] Brandhuber, D., Kaiser, P., Hüsing, N., J. Sol-Gel Sci. Technol., 40, 131 (2006).Google Scholar
[15] Brandhuber, D., Peterlik, H., Hüsing, N., Small, 2, 503 (2006).Google Scholar
[16] Hüsing, N., Brandhuber, D., Torma, V., Raab, C., Peterlik, H., Chem. Mater., 17, 4262 (2005).Google Scholar
[17] Hüsing, N., Raab, C., Torma, V., Brandhuber, D., Peterlik, H., J. Mater. Chem., 15, 1801 (2005).Google Scholar
[18] Hartmann, S., Brandhuber, D., Hüsing, N., Acc. Chem. Res., 40, 885894 (2007).Google Scholar
[19] Jiang, X., Herricks, T., Xia, Y., Adv. Mater., 15, 1206 (2003).Google Scholar
[20] Pal, M., Serrano, J., Santiago, P., Pal, U., J. Phys. Chem. C, 111, 96 (2007).Google Scholar
[21] Fröba, M., Thoms, H., Epple, M., Wong, J., Reller, A., J. Mater. Chem., 8, 1447 (1998).Google Scholar
[22] Mehrotra, R., Narain, R., Indian Journal of Chemistry, 5, 444Google Scholar
[23] Xia, Y., Xuchuan, J., Herricks, T., Adv. Mater., 15, 1205 (2003).Google Scholar
[24] Schumacher, B., Plzak, V., Kinne, M., Behm, R.J., Catal. Lett., 89, 109 (2003).Google Scholar
[25] Plzak, V., Garche, J., Behm, R.J., European Fuel Cell News, 10, 16 (2003).Google Scholar
[26] Bruinsma, P., Kim, A., Liu, J., Baskaran, S., Chem Mater., 9, 2507 (1997).Google Scholar
[27] Yang, P., Zhao, D., Margolese, D., Chmelka, B., Stucky, G., Chem Mater., 11, 2813 (1999).Google Scholar