Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T11:57:37.879Z Has data issue: false hasContentIssue false

MEMS Metallization

Published online by Cambridge University Press:  17 March 2011

Christian Lohmann
Affiliation:
Chemnitz University of Technology (CUT), Center of Microtechnologies Chemnitz, Germany
Knut Gottfried
Affiliation:
Fraunhofer IZM, Department MDE Chemnitz, Germany
Andreas Bertz
Affiliation:
Chemnitz University of Technology (CUT), Center of Microtechnologies Chemnitz, Germany
Danny Reuter
Affiliation:
Chemnitz University of Technology (CUT), Center of Microtechnologies Chemnitz, Germany
Karla Hiller
Affiliation:
Chemnitz University of Technology (CUT), Center of Microtechnologies Chemnitz, Germany
Michael Kuhn
Affiliation:
Chemnitz University of Technology (CUT), Center of Microtechnologies Chemnitz, Germany
Thomas Gessner
Affiliation:
Chemnitz University of Technology (CUT), Center of Microtechnologies Chemnitz, Germany Fraunhofer IZM, Department MDE Chemnitz, Germany
Get access

Abstract

Silicon is the dominating material for the fabrication of MEMS devices, especially in high volume production. However, metals with their typical properties are used to enhance or enable the functionality of MEMS. In contrast to microelectronic technologies, not only the electrical but also the mechanical and optical behavior of metals could be helpful. New requirements in MEMS technologies demand optimized processes in metallization for the fabrication of microstructures.

This paper presents some metallization applications and related technology development in the field of MEMS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrfeld, W. et al. , “LIGA Process: Sensor Construction Techniques via X–Ray Lithography”, Technical Digest, IEEE Sensor and Actuator Workshop, pp. 14, 1988 Google Scholar
2. Kuisma, H., “Inertial Sensors for Automotive Applications”, Transducers '01, 2A1.01, pp. 430433, 2001 Google Scholar
3. Rebeiz, G.M., “RF MEMS Switches”, Transducers '‘03, 4A1A, pp. 17261729, 2003 Google Scholar
4. Guillou, D.F., Santhanam, S., Carley, L.R., “Laminated, Sacrificial –Poly MEMS Technology in Standard CMOS”, Sensors and Actuators 85 (2000) pp. 346355 CrossRefGoogle Scholar
5. Saif, M.T.A., Donald, N.C. Mc, “Planarity of Large MEMS”, J. of MEMS, Vol. 5, No.2, June 1996, pp. 7997 CrossRefGoogle Scholar
6. Gessner, T., Bertz, A., Steiniger, C., Wollmann, U., “Material and Technology Approaches of Surface Micromachining”, Proc. of the Micro Matreials '97, Berlin, Germany, 1997, pp.9096 Google Scholar
7. Douglass, M.R.: Reliability, DMD, “A MEMS Success Story”, Proc. of SPIE Vol. 4980 (2003) pp. 111 CrossRefGoogle Scholar
8. Bertz, A., Küchler, M., Knöfler, R., Gessner, T., “A Novel High Aspect Ratio Technology for MEMS Fabrication Using Standard Silicon Wafers”, Sensors and Actuators A 97–98 (2002), pp. 691701 CrossRefGoogle Scholar
9. Gessner, T., Gottfried, K., Hoffmann, R., Kaufmann, C., Weiss, U. Charetdinov, E., Hauptmann, P., Lucklum, R., Zimmermann, B., Dietel, U., Springer, G., Vogel, M.,“Metal oxide gas sensor for high temperature application”; Microsystem Technologies Vol. 6, No. 5, August 2000 CrossRefGoogle Scholar
10. Gessner, T., Kurth, S., Kaufmann, C., Markert, J., Ehrlich, A., Dötzel, W.. “Micomirrors and micromirror arrays for scanning applications” Proceedings of SPIE, Vol. 4178 – 35, pp. 338347, 18-21 September 2000, Santa Clara, CA, USAGoogle Scholar
11. Kuhn, M.; Flaspöhler, M.; Krönert, S.; Kaufmann, C.; Gessner, T.; Hübler, A.; Frühauf, J, “Microactuators with Diffraction Grating”, Micro System Technologies 2003, Postersession, München, October 7-8, 2003 Google Scholar
12. Zhang, Z.L., MacDonald, N.C., “An RIE process for submicron silicon electromechanical structures”, J. Micromech. Mircoeng., 2 (1992) pp.3138.CrossRefGoogle Scholar
13. Hiller, K., Kurth, S., Neumann, N., Hahn, R., Kaufmann, C., Hanf, M., Heinz, S., Gessner, T., Dötzel, W., Ebest, G., “Application of low temperature direct bonding in optical devices and integrated systems”, Proceedings of MICRO SYTEM Technologies 2003, pp. 102109 Google Scholar
14. Berg, J. von, “Piezoresitiver Brennraumdrucksensor auf der Basis neuer Substratmaterialien für den Serieneinsatz im Automotor”, Dissertation TU Berlin, UFO Atelier für Gestaltung und Verlag GbR, Allensbach, ISBN 3.930803-88-7, 2000 Google Scholar
15. Krötz, G., Möller, H., Eickhoff, M., Zappe, S., Ziermann, R., Obermeier, E., Stoemenos, J., “Hetroepitaxial Growth of 3C-SiC on SOI for sensor applications”, Mat. Science and Eng. B61–62, 1999, pp. 516521 CrossRefGoogle Scholar
16. Goesemann, F., Schmid-Fetzer, R., “Stability of W as electrical contact to 6H-SiC, phase relations and interface reactions in the ternary system W-Si-C”, Materials Science and Engineering, 1995, Volume B34, pp. 224231 CrossRefGoogle Scholar
17. Costa, Silva, Kaufman, M. J., “Phase Relations in the Mo-Si-C System Relevant to the Processing of MoSi2-SiC Composites”, Metallurgical and Materials Transactions A, 1994, Volume 25 A, pp. 515 Google Scholar
18. Porter, L. M., Davis, F., “A critical review of ohmic and rectifying contacts for silicon carbide”, Materials Science and Engineering, 1995, Volume B34, pp. 83105 CrossRefGoogle Scholar
19. Lundberg, N., Östling, M., “CoSi2 ohmic contacts to n-type 6H-SiC, Solid-State Electronics”, 1995, Volume 38 No.12, pp. 20232028 Google Scholar
20. Benoit, J.T., Grzybowski, R.R., Kervin, D.B., “Evaluation of aluminium wire bonds for high temperature (200 −C) electronic packaging”, Third international high temperature electronics conference, 1996, Trans. vol. 1, pp. III17 Google Scholar