Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T05:45:47.616Z Has data issue: false hasContentIssue false

Melting vs. Solidification of a Pure Metal Analysed by DSC

Published online by Cambridge University Press:  10 February 2011

N. Clavaguera
Affiliation:
Grup de Física de l'Estat Sòlid, Dept. E.C.M., Facultat de Física, Universitat de Barcelona, Diagonal, 647, 08028-Barcelona, Spain
M. T. Clavaguera-Mora
Affiliation:
Grup de Física de Materials I, Departament de Física, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain.
J. Fontán
Affiliation:
Grup de Física de Materials I, Departament de Física, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain.
J. L. Touron
Affiliation:
Grup de Física de Materials I, Departament de Física, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain.
C. Comas
Affiliation:
Grup de Física de Materials I, Departament de Física, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain.
Get access

Abstract

The aim of the present paper is to analyse the melting/solidification of pure metals resulting from non-equilibrium conditions. Attention is focused on the direct measurement of the calorimetric signal obtained under isothermal hold of the sample at a temperature close to the equilibrium melting temperature Tm, which results in both melting of an overheated solid and solidification of an undercooled melt. The non-equilibrium transformations are monitored by DSC under isothermal regime, with previous continuous heating/continuous cooling of the sample. The dependence of the calorimetric signal on thermodynamic factors, ΔH and ΔG, is explored. Here ΔH and ΔG are, respectively, the melting enthalpy and Gibbs free energy difference between the crystal and the liquid. In particular, the results of the investigation performed on the melting/solidification behaviour of pure In and Pb are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Speyer, R.F., Thermal Analysis of Materials, Marcel Dekker, inc., New York 1994.Google Scholar
2. Clavaguera, N., Clavaguera-Mora, M.T. and Fontana, M., J. Mater. Res. 13 (1998) pp.744753.Google Scholar
3. Christian, J.W., in ‘The theory of phase transformations in metals and alloys’, 1965, Oxford, Pergamon Press, p. 377.Google Scholar
4. Baker, J.C. and Cahn, J.W., in ‘Solidification’, 1971, Metals Park, OH, ASM, p.23.Google Scholar
5. Spaepen, F. and , D, Turnbull, Proc. 2nd. Int. Conf. on Rapidly Quenched Metals (edited by Grant, N.J. and Giessen, B.C.) p. 205, M.I.T. Press, 1976.Google Scholar
6. Perepezko, J.H., in “Rapid Solidification Processing Principles and Technologies” ed. Mehrabian, R., Kear, B.H. and Cohen, M., Claitor's Publishing Division, Baton Rouge, LA. 1980, p. 56.Google Scholar
7. Homogeneous Second Phase Precipitation Wagner, R. and Kampmann, R., in Phase Transformations in Materials, Volume Ed. Haasen, P., Materials Sci. & Techn. Vol.5, de. R.W. Cahn, P. Haasen & E.J. Kramer, VCH 1991, pp.213304.Google Scholar