Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T19:00:54.675Z Has data issue: false hasContentIssue false

Mechanisms for Microstructure Evolution in Electroplated Copper Thin Films

Published online by Cambridge University Press:  10 February 2011

J. M. E. Harper
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
C. Cabral Jr
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
P. C. Andricacos
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
L. Gignac
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
I. C. Noyan
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
K. P. Rodbell
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
C. K. Hu
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

We present a model which accounts for the dramatic evolution in the microstructure of electroplated copper thin films near room temperature. Microstructure evolution occurs during a transient period of hours following deposition, and includes an increase in grain size, changes in preferred crystallographic texture, and decreases in resistivity, hardness and compressive stress. As the grain size increases from the as-deposited value of 0.05–0.1 μm up to several μm, the decreasing grain boundary contribution to electron scattering lowers the resistivity by tens of percent to near-bulk values. Concurrently, as the volume of grain boundaries decreases, the stress is shown to change in the tensile direction by tens of MPa. The as-deposited grain size is also shown to be consistent with grain boundary pinning.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

2. Cabral, C. Jr., Andricacos, P.C., Gignac, L., Noyan, I.C., Rodbell, K.P., Shaw, T.M., Rosenberg, R., Harper, J.M.E., DeHaven, P.W., Locke, P.S., Malhotra, S., Uzoh, C. and Klepeis, S.J., Proc. Adv. Metall. Conf. (1998), in press.Google Scholar
1. Andricacos, P.C., Uzoh, C., Dukovic, J., Horkans, J. and Deligianni, H., IBM J. Res. Develop. 42(5), 567 (1998).Google Scholar
4. Gross, M.E., Lingk, C., Siegrist, T., Coleman, E., Brown, W.L., Ueno, K., Tsuchiya, Y., Itoh, N., Ritzdorf, T., Turner, J., Gibbons, K., Klawuhn, E., Biberger, M., Lai, W.Y.C., Miner, J.F., Wu, G. and Zhang, F., Mater. Res. Soc. Symp. Proc. 514, 293 (1998).Google Scholar
3. Ritzdorf, T., Graham, L., Jin, S., Mu, C. and Fraser, D.B., Proc. Int'l. Interconnect Technol. Conf., p. 166 (IEEE, 1998).Google Scholar
5. Dubin, V.M., Morales, G., Ryu, C. and Wong, S.S., Mat. Res. Soc. Symp. 505, 137 (1998).Google Scholar
6. Lingk, C. and Gross, M.E., J. Appl. Phys. 84, 5547 (1998 Google Scholar
7. Jiang, Q.-T., Mikkola, R., Carpenter, B. and Thomas, M.E., Proc. Adv. Metall. Conf. (1998); Q.-T. Jiang and K. Smekalin, Proc. Adv. Metall. Conf. (1998).Google Scholar
8. Gignac, L.M., Rodbell, K.P., Cabral, C. Jr., Andricacos, P.C., Locke, P.S., Klepeis, S.J., Beyers, R.B. and Rice, P.M., Proc. Mat. Res. Soc. Spring 1999, Symposium N “Advanced Interconnects and Contacts”, San Francisco, CA, to be published.Google Scholar
9. Thompson, C.V., J. Appl. Phys. 58, 763 (1985).Google Scholar
10. Harper, J.M.E., Colgan, E.G., Hu, C.K., Hummel, J., Buchwalter, L.P. and Uzoh, C.E., MRS Bulletin, 19, 23 (1994).Google Scholar
11. Chambers, R.G., Proc. Royal Soc. London, A202, 378 (1950).Google Scholar
12. Handbook of Electrical Resistivities of Binary Metallic Alloys (CRC Press, 1983).Google Scholar
13. Schultz, P.J. and Lynn, K.G., Rev. Mod. Phys. 60, 701 (1988); K.P. Rodbell, M. Weber and K.G. Lynn, unpublished results (1998).Google Scholar
14. Mayadas, A.F. and Shatzkes, M., Phys. Rev. B 1(4), 1382 (1970).Google Scholar
15. Chaudhari, P., J. Vac. Sci. Technol. 9(1), 520 (1972).Google Scholar
16. Metallization Theory and Practicef or VLSI and ULSI, Murarka, S. (Butterworth-Heinemann, Boston, 1993), p. 19.Google Scholar
17. Hogan, B.M., Proc. Surf.-Finish 84, Amer. Electroplaters and Surface Finishers Soc., Orlando (1984); H.J. Wiesner and W.J. Frey, Plating and Surf. Finishing 66, 51 (1979).Google Scholar
18. Zener, C., quoted by Smith, C.S., Trans. AIME 175, 15 (1948).Google Scholar
19. Phase Transformations in Metals and Alloys, Porter, D.A. and Easterling, K.E. (Van Nostrand Reinhold, UK, 1984), p. 141.Google Scholar
20. Bai, G., Chiang, C., Cox, J.N., Fang, S., Gardner, D.S., Mack, A., Marieb, T., Mu, X.-C., Ochoa, V., Villasol, R. and Yu, J., p. 48, 1996 IEEE Symp. on VLSI Technol. Digest (1996).Google Scholar
21. Recrystallization and Related Annealing Phenomena, Humphreys, F.J. and Hatherly, M. (Elsevier Science Ltd., Oxford, U.K. 1996), p. 314.Google Scholar
22. Harper, J.M.E., Cabral, C. Jr., Andricacos, P.C., Gignac, L., Noyan, I.C., Rodbell, K.P. and Hu, C.K., to be published.Google Scholar