Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T14:56:17.468Z Has data issue: false hasContentIssue false

Mechanism of Sulfate Segregation during Glass Melting

Published online by Cambridge University Press:  11 February 2011

Pavel Hrma
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352–999, U.S.A.
John D. Vienna
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352–999, U.S.A.
Joel S. Ricklefs
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352–999, U.S.A.
Get access

Abstract

Sulfate retention in glass during the vitrification process can be as low as 1/3 of the solubility limit, or can exceed the solubility limit if suspended in the glass in the form of droplets. This study is focused on the mechanism of incorporating and segregating sodium sulfate during the melting of an alkali-alumino-borosilicate glass batch. Batches were ramp heated at 4°C/min to temperatures ranging from 600°C to 1050°C and fractured for examination. Observation of the melts showed that as the batch temperature increases and the primary oxo-anionic, predominantly nitrate melt decomposes, the sulfate residue accumulates inside gas bubbles and is transported in them to the melt surface, where it remains segregated. The degree of sulfate incorporation into the final glass depends on the relative rates of sulfate dissolution in the borosilicate melt and sulfate lifting inside bubbles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Conroy, A. R., Manring, W. H, and Bauer, W. C., Glass Industry 46, [2] 84 (1966).Google Scholar
2. Bickford, D. F., Hrma, P., and Bowan, B. W. II, J. Am. Ceram. Soc. 73, 2903 (1990).Google Scholar
3. Smith, P. A., Vienna, J. D., and Hrma, P., J. Mat. Res. 10, 2137 (1995).Google Scholar
4. Whittington, K. F., Seiler, D. K., Luey, J., Vienna, J. D., and Sliger, W. A., Feed Process Studies — Research-Scale Melter, PNNL-11333, Pacific Northwest National Laboratory, Richland, Washington (1996).Google Scholar
5. Darab, J. G., Meiers, E. M., and Smith, P. A., in Scientific Basis for Nuclear Waste Management XXII, edited by Wronkiewicz, D. W. and Lee, J. H. (Mater. Res. Soc. Proc. 556, Pittsburgh, Pennsylvania, 1999) pp. 215222.Google Scholar
6. Izak, P., Hrma, P., Arey, B. W., and Plaisted, T. J., J. Non-Cryst. Solids 289, 17 (2001).Google Scholar
7. Schreiber, H. D., Leonhard, P. G., Nosfinger, R. G., Henning, M. W., Schreiber, C. W., and Kozak, S. J., Adv. in Fusion of Glass 29, Am. Ceram. Soc., Westerville, Ohio, 1988.Google Scholar
8. Schreiber, H. D., Kozak, S. J., Leonard, P. G., and McManus, K. K., Glastech. Ber. 60, 389 (1987).Google Scholar
9. Goles, R. W., Perez, J. M., MacIsaac, B. D., Siemer, D. D., and McCray, J. A., Test Summary Report INEEL Sodium-bearing Waste Vitrification Demonstration – RSM-01–1, PNNL-13522, Pacific Northwest National Laboratory, Richland, Washington (2001).Google Scholar
10. Krämer, F. W., Glastech. Ber. 63, 71 (1991).Google Scholar
11. Li, H., Hrma, P., and Vienna, J. D., Ceramic Transactions 119, 237 (2001).Google Scholar
12. Nagashima, S. and Katsura, T., Bull. Chem. Soc. Japan 46, 30993103 (1973).Google Scholar
13. Muller, I. S., Buechelle, A. C., and Pegg, I. L., Glass Formulation and Testing with RPP-WTP LAW Simulants, VSL-01R3560–2, Vitreous State Laboratory, Washington, D. C. (2001).Google Scholar
14. Hrma, P., Goles, C. E., and Yasuda, D. D., Ceram. Trans. 23, 361367 (1991).Google Scholar
15. Jebsen-Marwedel, H. and Brückner, R., Glastechnische Fabrikationsfehler, Springer, Berlin (1980).Google Scholar
16. Bartuska, M., Vady skla, Prah, Praha 2001.Google Scholar
17. Levich, V. G., Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New York, 1962, p. 8087.Google Scholar
18. Darab, J. G., Graham, D. D., MacIsaac, B. D., Russell, R. L., Peeler, D. K., Smith, H. D., and Vienna, J. D., Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report, PNNL-13588, Pacific Northwest National Laboratory, Richland, Washington (2001).Google Scholar
19. Perry, K. J., Kimmitt, R. R., Soelberg, N. R., Tillotson, R. D., and Olson, A. N., Test Results from SBW-FY01-PS-01 Vitrification Demonstration of Sodium Bearing Waste Simulant Using WM-180 Surrogate, INEEL/EXT-01–01073, Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho (2001).Google Scholar
20. Goles, R. W., Del Debbio, J. A., Kirkham, R. J., MacIsaac, B. D., McCray, J. A., Siemer, D. D., and Solberg, N. R., Test Summary Report INEEL Sodium-bearing Waste Vitrification Demonstration – RSM-01–2, PNNL-13869, Pacific Northwest National Laboratory, Richland, Washington (2002).Google Scholar