Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-23T21:46:44.748Z Has data issue: false hasContentIssue false

Mechanism of Electron Injection During the Anodic Oxidation of Silicon

Published online by Cambridge University Press:  28 February 2011

J.-N. Chazalvel
Affiliation:
Laboratoire PMC, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France.
F. Ozanam
Affiliation:
Laboratoire PMC, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France.
Get access

Abstract

n-Si photoanodes have been found to exhibit photocurrent multiplication during the first seconds of exposure to a fluoride-free, acidic electrolyte. This shows that, in contrast with earlier hypotheses, photocurrent doubling is not directly related to the presence of fluoride in the electrolyte, but rather must arise from an electron injection mechanism associated with the Si-H bonds initially present at the Si surface. It also suggests that the electroluminescence which has been observed during the anodic oxidation of porous silicon most probably stems from the same electron-injection mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Héarino, R., Ligeon, M. and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
2. Morrison, S.R., Electrochemistry at semiconductor and oxidized metal electrodes, (Plenum, New York, 1980) Chap. 6, pp. 189262.Google Scholar
3. Memming, R. and Schwandt, G., Surf. Sci. 4, 109 (1966).Google Scholar
4. Kato, Y., Ito, T. and Hiraki, A., Jpn. J. Appl. Phys. 37, L1406 (1988).Google Scholar
5. Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. B, 37, 8234 (1988).Google Scholar
6. Venkateswara Rao, A., Ozanam, F. and Chazalviel, J.-N., J. Electrochem. Soc. 138, 153 (1991).Google Scholar
7. Matsumura, M. and Morrison, S.R., J. Electroanal. Chem. 147, 157 (1983).Google Scholar
8. Stumper, J., Lewerenz, H.J. and Pettenkofer, C., Electrochim. Acta 34, 1379 (1989).Google Scholar
9. Gerischer, H., Electrochim. Acta 35, 1677 (1990).Google Scholar
10. Chazalviel, J.-N., Surf. Sci. 88, 204 (1979).Google Scholar
11. Gerischer, H. and Lübke, M., Ber. Bunsenges Phys. Chem. 92, 573 (1988).Google Scholar
12. Chazalviel, J.-N., Stefenel, M. and Truong, T.B., Surf. Sci. 134, 865 (1983).Google Scholar
13. Harrick, N.J. and Beckmann, K.H., in Characterization of Solid Surfaces, edited by Kane, P.F. and Larrabee, G.R. (Plenum, New York, 1974), p. 243.Google Scholar
14. Ubara, H., Imura, T. and Hiraki, A., Solid State Comm. 50, 673 (1984).Google Scholar
15. Tardella, A. and Chazalviel, J.-N., Appl. Phys. Lett. 47, 334 (1985).Google Scholar
16. Yablonovitch, E., Allara, D.L., Chang, C.C., Gmitter, T. and Bright, T.B., Phys. Rev. Lett. 57, 249 (1986).Google Scholar
17. Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K. and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988).Google Scholar
18. Ozanam, F. and Chazalviel, J.-N., J. Electroanal. Chem. 269, 251 (1989).Google Scholar
19. Chazalviel, J.-N., J. Electroanal. Chem. 233, 37 (1987).Google Scholar
20. Halimaoui, A., Thèse de Doctorat d'Etat, Université de Grenoble I (1991).Google Scholar
21. Chazalviel, J.-N., Electrochim. Acta 37, 865 (1992).Google Scholar
22. Blackwood, D.J., Borazio, A., Greef, R., Peter, L.M. and Stumper, J., Electrochim. Acta 37, 889 (1992).Google Scholar
23. Lehmann, Y. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
24. Vial, J.-C. (private communication).Google Scholar