Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T14:25:47.010Z Has data issue: false hasContentIssue false

Mechanism of Cr Diffusion in GaAs

Published online by Cambridge University Press:  26 February 2011

S. Yu
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
T. Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
U. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
Get access

Abstract

Diffusion of substitutional Cr atoms (Crs) in GaAs results from the rapid migration of interstitial Cr atoms (Cri) and their subsequent changeover to occupy Ga sites (or vise versa), a typical substitutional-interstitial diffusion (SID) process. There are two possible ways for the Cri-Crs changeover to occur: the kick-out mechanism in which Ga self-interstitials are involved, and the dissociative mechanism in which Ga vacancies are involved. The Crs indiffusion profiles are of characteristic shapes indicating the dominance of the kick-out mechanism, while the Crs outdiffusion profiles are error-function shaped, indicating the dominance of the dissociative mechanism. In this study, an integrated SID mechanism, which takes into account the effects of both the kick-out and dissociative mechanisms, is used to analyze Cr diffusion results. Going beyond just qualitative consistency, the Cr in- and outdiffusion features in GaAs are explained on a quantitative basis. In this model the kick-out mechanism dominates Cr indiffusion while the dissociative mechanism dominates Cr outdiffusion. Parameters used to fit existing experimental results provided quantitative information on the Ga self-interstitial contribution to the Ga self-diffusion coefficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brozel, M. R., Newman, R. C., Ritson, A., Stirland, D. J., and Whitehead, , J. Phys. C11, 1857 (1978).Google Scholar
2. White, A. M., in Semi-Insulating III-V Materials, ed. Rees, G. J. (Shiva, London, 1980) p.77.Google Scholar
3. Eu, V., Feng, M., Henderson, W. B., and Kim, H. B., Appl. Phys. Lett. 37, 473 (1980).Google Scholar
4. Tuck, B. and Adegboyega, G. A., J. Phys. D 12, 1895 (1979).Google Scholar
5. Deal, M. D. and Stevenson, D. A., J. Appl. Phys. 59, 2398 (1986).Google Scholar
6. Kashara, J. and Watanabe, N., Jpn. J. Appl. Phys. 19, L151 (1980).Google Scholar
7. Huber, A. M., Morillot, G., Linh, N. T., Fevennce, P. N., Deveand, B., and Toulouse, B., Appl. Phys. Lett. 34, 858 (1979).Google Scholar
8. Wilson, R. G., Vasudev, P. K., Jamba, D. M., Evens, C. A. Jr, and Deline, V. R., Appl. Phys. Lett. 36, 215 (1980).Google Scholar
9. Magee, T. J., Lee, K. S., Ormond, R., Evens, C. A. Jr, Blattner, R. J., and Hopkins, C., Appl. Phys. Lett. 37, 635 (1980).Google Scholar
10. Palmateer, S. C., Schaff, W. J., Gauluska, A., Berry, J. D., and Eastman, L. R., Appl. Phys. Lett. 42, 182 (1983).Google Scholar
11. Rohdin, H., Muller, M. W., and wolfe, C. M., J. Electron. Mat. 11, 517 (1982).Google Scholar
12. Tuck, B., J. Phys. D 18, 557 (1985).Google Scholar
13. Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1956).Google Scholar
14. Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23, 361 (1980).Google Scholar
15. Yu, S., Tan, T. Y., and Gösele, U. M., J. Appl. Phys. 69, 3547 (1991).CrossRefGoogle Scholar
16. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
17. Yu, S., Gösele, U. M., and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).Google Scholar
18. Tan, T. Y., Yu, S., and Gösele, U. M., this volume.Google Scholar