Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-25T18:20:52.987Z Has data issue: false hasContentIssue false

Measurement of Uranium Series Radionuclides in Rock and Groundwater at the Koongarra ore Deposit, Australia, by Gamma Spectrometry

Published online by Cambridge University Press:  15 February 2011

Nobuyuki Yanase
Affiliation:
Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319–11, JAPAN
Keiichi Sekine
Affiliation:
Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319–11, JAPAN
Get access

Abstract

Gamma spectrometry without any self-absorption correction was developed to measure low energy gamma rays emitted by uranium and actinium series radionuclides in rock samples and groundwater residues collected at the Koongarra ore deposit, Australia. Thin samples were prepared to minimize the self-absorption by uranium in the samples. The present method gave standard deviations of 0.9 to 18% for the measurements of concentrations of uranium and actinium series radionuclides. The concentrations of 238U, 230Th and 235U measured by gamma spectrometry were compared with those by alpha spectrometry that requires a complicated chemical separation procedure. The results obtained by both methods were in fairly good agreement, and it was found that the gamma spectrometry is applicable to rock and groundwater samples having uranium contents up to 8.1% (103 Bq/g) and 3 Bq/1 of 238U, respectively. The detection limits were calculated to be of the order of 10−2 Bq/g for rock samples and 10−2 Bq/1 for groundwater samples. The concentrations of uranium and actinium series radionuclides can be determined precisely in these samples using gamma spectrometry without any self-absorption correction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ivanovich, M. and Harmon, R. S., Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2nd ed. (Clarendon Press, Oxford, 1992), p. 910.Google Scholar
2. Matsunami, T., Mizohata, A., Mamuro, T. and Tsujimoto, T., Hoken Butsuri 13, 193 (1978).Google Scholar
3. Michel, J., Moore, W. S. and King, P. T., Anal. Chem. 53, 1885 (1981).Google Scholar
4. Megumi, K., Oka, T., Yaskawa, K. and Sakanoue, M., J. Geophys. Res. 87, 10857 (1982).Google Scholar
5. Ishikawa, Y., Murakami, H., Sekine, T., Saito, T. and Yoshihara, K., J. Radioanal. Nucl. Chem. Art. 178, 301 (1994).Google Scholar
6. Okujeni, C. D. and Funtua, I. I., J. Radioanal. Nucl. Chem. Art. 178, 375 (1994).Google Scholar
7. Dickson, B. L. and Snelling, A. A., in Uranium in the Pine Creek Geosyncline. edited by J. Ferguson and A. B. Goleby (IAEA, Vienna, 1980) p. 499.Google Scholar
8. Nakamura, T., Nucl. Instrum. Methods 131, 521 (1975).Google Scholar
9. Komura, K., Yamamoto, M. and Ueno, K., Nucl. Instr. and Meth. A295, 461 (1990).Google Scholar
10. Snelling, A. A., Alligator Rivers Analogue Project Final Report Vol.2, Australian Nuclear Science & Technology Organisation (1992).Google Scholar
11. Davis, S. N., Marley, R. D. and Norris, J. R., Alligator Rivers Analogue Project Final Report Vol.5, Australian Nuclear Science & Technology Organisation (in press).Google Scholar
12. Payne, T. E., Edis, R., Herczeg, L., Sekine, K., Seo, T., Waite, T. D. and Yanase, N., Alligator Rivers Analogue Project Final Report Vol.7, Australian Nuclear Science & Technology Organisation (1992).Google Scholar
13. Edis, R., Cao, L., Cashion, J., Klessa, D., Koppi, A. J., Murakami, T., Nightingale, T., Payne, T. E., Snelling, A. and Yanase, N., Alligator Rivers Analogue Project Final Report Vol.8, Australian Nuclear Science & Technology Organisation (in press).Google Scholar
14. Murakami, T., Isobe, H., Ohnuki, T., Yanase, N., Sato, T., Kimura, H., Sekine, K., Edis, R., Koppi, A. J., Klessa, D. A., Conoley, C., Nagano, T., Nakashima, S. and Ewing, R. C., Alligator Rivers Analogue Project Final Report Vol.9, Australian Nuclear Science & Technology Organisation (1992).Google Scholar
15. Yanase, N., Nightingale, T., Payne, T. and Duerden, P., Radiochim. Acta 52/53, 387 (1991).Google Scholar
16. Lau, H. M., Sakanoue, M. and Komura, K., Nucl. Instrum. Methods 200, 561 (1982).Google Scholar
17. Cooper, J. A., Nucl. Instrum. Methods 82, 273 (1970).Google Scholar
18. Asikainen, M., Geochim. Cosmochim. Acta 45, 201 (1981).Google Scholar
19. Rosholt, J. N., J. Geophys. Res. 88, 7315 (1983).Google Scholar
20. Megumi, K., Tsujimoto, T., Oka, T. and Katsurayama, K., Hoken Butsuri 20, 259 (1985).Google Scholar
21. Yunoki, E., Kataoka, T., Michihiro, K., Sugiyama, H., Shimizu, M. and Mori, T., J. Radioanal. Nucl. Chem. Lett. 166, 331 (1992).Google Scholar